8fae3aef46180186d420db3ec88fc747261f0d5c,models/ShowTellModel.py,ShowTellModel,_sample,#ShowTellModel#Any#Any#Any#Any#,120

Before Change



        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size)
        seq = []
        seqLogprobs = []
        for t in range(self.seq_length + 2):
            if t == 0:
                xt = self.img_embed(fc_feats)
            else:
                if t == 1: // input <bos>
                    it = fc_feats.data.new(batch_size).long().zero_()
                elif sample_max:
                    sampleLogprobs, it = torch.max(logprobs.data, 1)
                    it = it.view(-1).long()
                else:
                    if temperature == 1.0:
                        prob_prev = torch.exp(logprobs.data).cpu() // fetch prev distribution: shape Nx(M+1)
                    else:
                        // scale logprobs by temperature
                        prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
                    it = torch.multinomial(prob_prev, 1).cuda()
                    sampleLogprobs = logprobs.gather(1, it) // gather the logprobs at sampled positions
                    it = it.view(-1).long() // and flatten indices for downstream processing

                xt = self.embed(it)

            if t >= 2:
                // stop when all finished
                if t == 2:
                    unfinished = it > 0
                else:
                    unfinished = unfinished * (it > 0)
                if unfinished.sum() == 0:
                    break
                it = it * unfinished.type_as(it)
                seq.append(it) //seq[t] the input of t+2 time step
                seqLogprobs.append(sampleLogprobs.view(-1))

            output, state = self.core(xt.unsqueeze(0), state)
            logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)

        return torch.cat([_.unsqueeze(1) for _ in seq], 1), torch.cat([_.unsqueeze(1) for _ in seqLogprobs], 1)

After Change



        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size)
        seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
        for t in range(self.seq_length + 2):
            if t == 0:
                xt = self.img_embed(fc_feats)
            else:
                if t == 1: // input <bos>
                    it = fc_feats.data.new(batch_size).long().zero_()
                xt = self.embed(it)

            output, state = self.core(xt.unsqueeze(0), state)
            logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)

            // sample the next word
            if t == self.seq_length + 1: // skip if we achieve maximum length
                break
            if sample_max:
                sampleLogprobs, it = torch.max(logprobs.data, 1)
                it = it.view(-1).long()
            else:
                if temperature == 1.0:
                    prob_prev = torch.exp(logprobs.data).cpu() // fetch prev distribution: shape Nx(M+1)
                else:
                    // scale logprobs by temperature
                    prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
                it = torch.multinomial(prob_prev, 1).cuda()
                sampleLogprobs = logprobs.gather(1, it) // gather the logprobs at sampled positions
                it = it.view(-1).long() // and flatten indices for downstream processing

            if t >= 1:
                // stop when all finished
                if t == 1:
                    unfinished = it > 0
                else:
                    unfinished = unfinished * (it > 0)
                it = it * unfinished.type_as(it)
                seq[:,t-1] = it //seq[t] the input of t+2 time step
                seqLogprobs[:,t-1] = sampleLogprobs.view(-1)
                if unfinished.sum() == 0:
                    break

        return seq, seqLogprobs
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 16

Instances


Project Name: ruotianluo/self-critical.pytorch
Commit Name: 8fae3aef46180186d420db3ec88fc747261f0d5c
Time: 2018-05-30
Author: rluo@ttic.edu
File Name: models/ShowTellModel.py
Class Name: ShowTellModel
Method Name: _sample


Project Name: rusty1s/pytorch_geometric
Commit Name: f6532b3c4c329e6d5d5fb846acc441df47616c4c
Time: 2020-03-22
Author: matthias.fey@tu-dortmund.de
File Name: torch_geometric/nn/models/gnn_explainer.py
Class Name: GNNExplainer
Method Name: explain_node


Project Name: ruotianluo/self-critical.pytorch
Commit Name: 8fae3aef46180186d420db3ec88fc747261f0d5c
Time: 2018-05-30
Author: rluo@ttic.edu
File Name: models/ShowTellModel.py
Class Name: ShowTellModel
Method Name: _sample