for comb in combinations:
config = config_init.copy()
for i, param_value in enumerate(comb):
config = params_helper.insert_value_or_dict_into_config(config, param_paths[i], param_value)
if (n_folds is not None) | is_loo:
// CV for model evaluation
After Change
if param_name != target_metric:
params_helper.insert_value_or_dict_into_config(best_config, param_paths[i], best_params_dict[param_name])
best_model_filename = pipeline_config_path.with_suffix(".cvbest.json")
save_json(best_config, best_model_filename)
log.info("Best model saved in json-file: {}".format(best_model_filename))