data.dtype == numpy.dtype("object"):
data = [hdf5_object.file[cur_data] for cur_data in data.flatten()]
iflen(data)== 1 and hdf5_object.attrs["MATLAB_class"] == b"cell":
data = data[0]
data = data[()]
return _assign_types(data)
After Change
data = [hdf5_object.file[cur_data] for cur_data in data.flatten()]
iflen(data)== 1 and matlab_class == "cell":
data = data[0]
matlab_class = data.attrs.get("MATLAB_class",
matlab_class).decode()
data = data[()]
return _assign_types(data, matlab_class)
data = _hdf5todict(data)