57a14faee7b0198e056e474c04ea346d148a2835,cellprofiler/modules/identifyprimaryobjects.py,IdentifyPrimaryObjects,display,#IdentifyPrimaryObjects#Any#Any#,1194
Before Change
orig_axes = figure.subplot(0,0)
label_axes = figure.subplot(1,0, sharexy = orig_axes)
outlined_axes = figure.subplot(0,1, sharexy = orig_axes)
table_axes = figure.subplot(1,1, sharexy = orig_axes)
title = "Input image, cycle //%d"%(workspace.measurements.image_number,)
figure.subplot_imshow_grayscale(0, 0,
workspace.display_data.image,
title)
figure.subplot_imshow_labels(1, 0, workspace.display_data.labeled_image,
self.object_name.value)
if workspace.display_data.image.ndim == 2:
// Outline the size-excluded pixels in red
outline_img = np.ndarray(shape=(workspace.display_data.image.shape[0],
workspace.display_data.image.shape[1],3))
outline_img[:,:,0] = workspace.display_data.image
outline_img[:,:,1] = workspace.display_data.image
outline_img[:,:,2] = workspace.display_data.image
else:
outline_img = workspace.display_data.image.copy()
// Outline the accepted objects pixels
draw_outline(outline_img, workspace.display_data.outline_image,
cpp.get_primary_outline_color())
// Outline the size-excluded pixels
draw_outline(outline_img,
workspace.display_data.outline_size_excluded_image,
cpp.get_secondary_outline_color())
// Outline the border-excluded pixels in yellow
draw_outline(outline_img,
workspace.display_data.outline_border_excluded_image,
cpp.get_tertiary_outline_color())
title = "%s outlines"%(self.object_name.value)
figure.subplot_imshow(0, 1, outline_img, title, normalize=False)
table_axes.clear()
table = table_axes.table(cellText=workspace.display_data.statistics,
colWidths=[.7,.3],
loc="center",
cellLoc="left")
table_axes.set_frame_on(False)
table_axes.set_axis_off()
table.auto_set_font_size(False)
table.set_fontsize(cpp.get_table_font_size())
def calc_smoothing_filter_size(self):
After Change
figure.subplot_table(
1, 1,
[[x[1]] for x in workspace.display_data.statistics],
row_labels = [x[0] for x in workspace.display_data.statistics])
def calc_smoothing_filter_size(self):
Return the size of the smoothing filter, calculating it if in automatic mode
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: CellProfiler/CellProfiler
Commit Name: 57a14faee7b0198e056e474c04ea346d148a2835
Time: 2013-03-18
Author: leek@broadinstitute.org
File Name: cellprofiler/modules/identifyprimaryobjects.py
Class Name: IdentifyPrimaryObjects
Method Name: display
Project Name: scikit-image/scikit-image
Commit Name: f877491f58df5667e65aff742f872625cb48df56
Time: 2016-06-07
Author: devel@sciunto.org
File Name: doc/examples/numpy_operations/plot_view_as_blocks.py
Class Name:
Method Name:
Project Name: scikit-image/scikit-image
Commit Name: 51f598aaedc73ef180913c670d2c20a8032aaf1e
Time: 2018-05-16
Author: egor.v.panfilov@gmail.com
File Name: doc/examples/edges/plot_random_shapes.py
Class Name:
Method Name: