cd5dfd62a1c0baeb68fdbc4eb56f66298b5d10e9,train_vidreid_xent.py,,main,#,36
Before Change
if args.load_weights and check_isfile(args.load_weights):
load_pretrained_weights(model, args.load_weights)
if args.resume and check_isfile(args.resume):
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint["state_dict"])
args.start_epoch = checkpoint["epoch"] + 1
print("Loaded checkpoint from "{}"".format(args.resume))
print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, checkpoint["rank1"]))
model = nn.DataParallel(model).cuda() if use_gpu else model
criterion = CrossEntropyLoss(num_classes=dm.num_train_pids, use_gpu=use_gpu, label_smooth=args.label_smooth)
optimizer = init_optimizer(model, **optimizer_kwargs(args))
scheduler = init_lr_scheduler(optimizer, **lr_scheduler_kwargs(args))
if args.evaluate:
print("Evaluate only")
for name in args.target_names:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]["query"]
galleryloader = testloader_dict[name]["gallery"]
distmat = test(model, queryloader, galleryloader, args.pool_tracklet_features, use_gpu, return_distmat=True)
if args.visualize_ranks:
visualize_ranked_results(
distmat, dm.return_testdataset_by_name(name),
save_dir=osp.join(args.save_dir, "ranked_results", name),
topk=20
)
return
start_time = time.time()
ranklogger = RankLogger(args.source_names, args.target_names)
train_time = 0
print("=> Start training")
if args.fixbase_epoch > 0:
print("Train {} for {} epochs while keeping other layers frozen".format(args.open_layers, args.fixbase_epoch))
initial_optim_state = optimizer.state_dict()
for epoch in range(args.fixbase_epoch):
start_train_time = time.time()
train(epoch, model, criterion, optimizer, trainloader, use_gpu, fixbase=True)
train_time += round(time.time() - start_train_time)
print("Done. All layers are open to train for {} epochs".format(args.max_epoch))
optimizer.load_state_dict(initial_optim_state)
for epoch in range(args.start_epoch, args.max_epoch):
start_train_time = time.time()
train(epoch, model, criterion, optimizer, trainloader, use_gpu)
train_time += round(time.time() - start_train_time)
scheduler.step()
if (epoch + 1) > args.start_eval and args.eval_freq > 0 and (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.max_epoch:
print("=> Test")
for name in args.target_names:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]["query"]
galleryloader = testloader_dict[name]["gallery"]
rank1 = test(model, queryloader, galleryloader, args.pool_tracklet_features, use_gpu)
ranklogger.write(name, epoch + 1, rank1)
save_checkpoint({
"state_dict": model.state_dict(),
"rank1": rank1,
"epoch": epoch,
}, False, osp.join(args.save_dir, "checkpoint_ep" + str(epoch + 1) + ".pth.tar"))
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
After Change
optimizer = init_optimizer(model, **optimizer_kwargs(args))
scheduler = init_lr_scheduler(optimizer, **lr_scheduler_kwargs(args))
if args.resume and check_isfile(args.resume):
args.start_epoch = resume_from_checkpoint(args.resume, model, optimizer=optimizer)
if args.evaluate:
print("Evaluate only")
for name in args.target_names:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]["query"]
galleryloader = testloader_dict[name]["gallery"]
distmat = test(model, queryloader, galleryloader, args.pool_tracklet_features, use_gpu, return_distmat=True)
if args.visualize_ranks:
visualize_ranked_results(
distmat, dm.return_testdataset_by_name(name),
save_dir=osp.join(args.save_dir, "ranked_results", name),
topk=20
)
return
start_time = time.time()
ranklogger = RankLogger(args.source_names, args.target_names)
train_time = 0
print("=> Start training")
if args.fixbase_epoch > 0:
print("Train {} for {} epochs while keeping other layers frozen".format(args.open_layers, args.fixbase_epoch))
initial_optim_state = optimizer.state_dict()
for epoch in range(args.fixbase_epoch):
start_train_time = time.time()
train(epoch, model, criterion, optimizer, trainloader, use_gpu, fixbase=True)
train_time += round(time.time() - start_train_time)
print("Done. All layers are open to train for {} epochs".format(args.max_epoch))
optimizer.load_state_dict(initial_optim_state)
for epoch in range(args.start_epoch, args.max_epoch):
start_train_time = time.time()
train(epoch, model, criterion, optimizer, trainloader, use_gpu)
train_time += round(time.time() - start_train_time)
scheduler.step()
if (epoch + 1) > args.start_eval and args.eval_freq > 0 and (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.max_epoch:
print("=> Test")
for name in args.target_names:
print("Evaluating {} ...".format(name))
queryloader = testloader_dict[name]["query"]
galleryloader = testloader_dict[name]["gallery"]
rank1 = test(model, queryloader, galleryloader, args.pool_tracklet_features, use_gpu)
ranklogger.write(name, epoch + 1, rank1)
save_checkpoint({
"state_dict": model.state_dict(),
"rank1": rank1,
"epoch": epoch + 1,
"arch": args.arch,
"optimizer": optimizer.state_dict(),
}, args.save_dir)
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 32
Instances
Project Name: KaiyangZhou/deep-person-reid
Commit Name: cd5dfd62a1c0baeb68fdbc4eb56f66298b5d10e9
Time: 2019-02-20
Author: k.zhou@qmul.ac.uk
File Name: train_vidreid_xent.py
Class Name:
Method Name: main
Project Name: KaiyangZhou/deep-person-reid
Commit Name: cd5dfd62a1c0baeb68fdbc4eb56f66298b5d10e9
Time: 2019-02-20
Author: k.zhou@qmul.ac.uk
File Name: train_imgreid_xent.py
Class Name:
Method Name: main
Project Name: KaiyangZhou/deep-person-reid
Commit Name: cd5dfd62a1c0baeb68fdbc4eb56f66298b5d10e9
Time: 2019-02-20
Author: k.zhou@qmul.ac.uk
File Name: train_imgreid_xent_htri.py
Class Name:
Method Name: main
Project Name: KaiyangZhou/deep-person-reid
Commit Name: cd5dfd62a1c0baeb68fdbc4eb56f66298b5d10e9
Time: 2019-02-20
Author: k.zhou@qmul.ac.uk
File Name: train_vidreid_xent.py
Class Name:
Method Name: main