705d7ff759a0b76ddf1b30ab8ef135c0b67efa8b,art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py,ProjectedGradientDescentPytorch,generate,#ProjectedGradientDescentPytorch#Any#Any#,123
Before Change
targets = y
inputs = torch.from_numpy(x).to(self.classifier._device)
targets = torch.from_numpy(targets.astype(float)).to(self.classifier._device)
// TODO
// if self.random_eps:
// ratio = self.eps_step / self.eps
After Change
if mask is not None:
// Ensure the mask is broadcastable
if len(mask.shape) > len(x.shape) or mask.shape != x.shape[-len(mask.shape):]:
raise ValueError("Mask shape must be broadcastable to input shape.")
adv_x_best = None
rate_best = None
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 705d7ff759a0b76ddf1b30ab8ef135c0b67efa8b
Time: 2020-04-23
Author: M.N.Tran@ibm.com
File Name: art/attacks/evasion/projected_gradient_descent/projected_gradient_descent_pytorch.py
Class Name: ProjectedGradientDescentPytorch
Method Name: generate
Project Name: rusty1s/pytorch_geometric
Commit Name: 9e2a150b630e08a7037c1fd19e01cd5206e84a24
Time: 2020-01-17
Author: matthias.fey@tu-dortmund.de
File Name: torch_geometric/transforms/grid_sampling.py
Class Name: GridSampling
Method Name: __call__
Project Name: IBM/adversarial-robustness-toolbox
Commit Name: 3bf391c2315bcec722961a2f4a093d1c516dbb10
Time: 2018-08-29
Author: Maria-Irina.Nicolae@ibm.com
File Name: art/classifiers/pytorch.py
Class Name: PyTorchClassifier
Method Name: __init__