fafe8422549c1809ad66f124e842431009bbddba,skbio/stats/ordination/tests/test_ordination.py,TestCAResults,test_scaling1,#TestCAResults#,285
Before Change
V = np.array([[1.31871, -0.34374],
[-0.37215, 1.48150],
[-0.99972, -0.92612]])
npt.assert_almost_equal(*normalize_signs(V, scores.species), decimal=5)
F = np.array([[-0.26322, -0.17862],
[-0.06835, 0.27211],
[0.51685, -0.09517]])
npt.assert_almost_equal(*normalize_signs(F, scores.site), decimal=5)
After Change
def test_scaling1(self):
eigvals = pd.Series(np.array([0.09613302, 0.04094181]), ["CA1", "CA2"])
// p. 458
features = pd.DataFrame(np.array([[1.31871, -0.34374], // V
[-0.37215, 1.48150],
[-0.99972, -0.92612]]),
["Species1", "Species2", "Species3"],
["CA1", "CA2"])
samples = pd.DataFrame(np.array([[-0.26322, -0.17862], // F
[-0.06835, 0.27211],
[0.51685, -0.09517]]),
["Site1", "Site2", "Site3"],
["CA1", "CA2"])
exp = OrdinationResults("CA", "Correspondance Analysis",
eigvals=eigvals, features=features,
samples=samples)
scores = ca(self.contingency, 1)
assert_ordination_results_equal(exp, scores,
ignore_directionality=True)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: biocore/scikit-bio
Commit Name: fafe8422549c1809ad66f124e842431009bbddba
Time: 2015-05-14
Author: yoshiki89@gmail.com
File Name: skbio/stats/ordination/tests/test_ordination.py
Class Name: TestCAResults
Method Name: test_scaling1
Project Name: biocore/scikit-bio
Commit Name: fafe8422549c1809ad66f124e842431009bbddba
Time: 2015-05-14
Author: yoshiki89@gmail.com
File Name: skbio/stats/ordination/tests/test_ordination.py
Class Name: TestCAResults
Method Name: test_scaling2
Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: 429ddb8fb8cc6d1492c9d459cd2120b75352f125
Time: 2018-10-23
Author: jkleint
File Name: category_encoders/tests/test_leave_one_out.py
Class Name: TestLeaveOneOutEncoder
Method Name: test_leave_one_out_fit_callTwiceOnDifferentData_ExpectRefit