e650a207efc9dd33556b1b9678b043f73a18aecb,examples/classification/plot_digits_classification.py,,,#,13

Before Change



images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted))
for index, (image, prediction) in enumerate(images_and_predictions[:4]):
    plt.subplot(2, 4, index + 5)
    plt.axis("off")
    plt.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest")
    plt.title("Prediction: %i" % prediction)

After Change


// matplotlib.pyplot.imread.  Note that each image must have the same size. For these
// images, we know which digit they represent: it is given in the "target" of
// the dataset.
_, axes = plt.subplots(2, 4)
images_and_labels = list(zip(digits.images, digits.target))
for ax, (image, label) in zip(axes[0, :], images_and_labels[:4]):
    ax.set_axis_off()
    ax.imshow(image, cmap=plt.cm.gray_r, interpolation="nearest")
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: scikit-learn/scikit-learn
Commit Name: e650a207efc9dd33556b1b9678b043f73a18aecb
Time: 2019-11-14
Author: thomasjpfan@gmail.com
File Name: examples/classification/plot_digits_classification.py
Class Name:
Method Name:


Project Name: scikit-image/scikit-image
Commit Name: 21339f4cbbe3988edfe24b28a91af2278b7a3382
Time: 2016-09-05
Author: multicolor.mood@gmail.com
File Name: doc/source/plots/hough_tf.py
Class Name:
Method Name:


Project Name: scikit-learn/scikit-learn
Commit Name: b4db36d337a4ff83f1bcb37c5a8c615d3134d372
Time: 2020-05-20
Author: jliu176@gmail.com
File Name: examples/covariance/plot_mahalanobis_distances.py
Class Name:
Method Name: