95768fe65dae1b92319a591e2358925b91cb3776,src/models.py,,simple_CNN,#,7
 
Before Change
    model.add(Dense(32))
    model.add(Activation("relu"))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes))
    model.add(Activation("softmax",name="predictions"))
    return model
def attention_CNN(input_shape, num_classes):
After Change
    model.add(Convolution2D(filters=16, kernel_size=(7, 7), padding="same",
                            name="image_array", input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(Convolution2D(filters=16, kernel_size=(7, 7), padding="same"))
    model.add(BatchNormalization())
    model.add(Activation("relu"))
    model.add(AveragePooling2D(pool_size=(2, 2), padding="same"))
    model.add(Dropout(.5))
    model.add(Convolution2D(filters=32, kernel_size=(5, 5), padding="same"))
    model.add(BatchNormalization())
    model.add(Convolution2D(filters=32, kernel_size=(5, 5), padding="same"))
    model.add(BatchNormalization())
    model.add(Activation("relu"))
    model.add(AveragePooling2D(pool_size=(2, 2), padding="same"))
    model.add(Dropout(.5))
    model.add(Convolution2D(filters=64, kernel_size=(3, 3), padding="same"))
    model.add(BatchNormalization())
    model.add(Convolution2D(filters=64, kernel_size=(3, 3), padding="same"))
    model.add(BatchNormalization())
    model.add(Activation("relu"))
    model.add(AveragePooling2D(pool_size=(2, 2), padding="same"))
    model.add(Dropout(.5))
    model.add(Convolution2D(filters=128, kernel_size=(3, 3), padding="same"))
    model.add(BatchNormalization())
    model.add(Convolution2D(filters=128, kernel_size=(3, 3), padding="same"))
    model.add(BatchNormalization())
    model.add(Activation("relu"))
    model.add(AveragePooling2D(pool_size=(2, 2), padding="same"))
    model.add(Dropout(.5))
    model.add(Convolution2D(filters=256, kernel_size=(3, 3), padding="same"))
    model.add(BatchNormalization())
    model.add(Convolution2D(filters=num_classes, kernel_size=(3, 3), padding="same"))
    model.add(GlobalAveragePooling2D())
    model.add(Activation("softmax",name="predictions"))
    return model

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
 Project Name: oarriaga/face_classification
 Commit Name: 95768fe65dae1b92319a591e2358925b91cb3776
 Time: 2017-05-19
 Author: arriaga.camargo@gmail.com
 File Name: src/models.py
 Class Name: 
 Method Name: simple_CNN
 Project Name: oarriaga/face_classification
 Commit Name: 95768fe65dae1b92319a591e2358925b91cb3776
 Time: 2017-05-19
 Author: arriaga.camargo@gmail.com
 File Name: src/models.py
 Class Name: 
 Method Name: simple_CNN
 Project Name: oarriaga/face_classification
 Commit Name: e90157e7f01c85e9ef22f9679f1a40bda0efb51f
 Time: 2017-06-30
 Author: arriaga.camargo@gmail.com
 File Name: src/models/cnn.py
 Class Name: 
 Method Name: simpler_CNN