803d7e1fc61536c846c811bdee158bd21db36779,models/Pointnet2SemSeg.py,Pointnet2MSG,__init__,#Pointnet2MSG#,90
Before Change
c_out_0 = 32 + 64
c_in = c_out_0 + 3
self.SA_module1 = PointnetSAModuleMSG(
npoint=256,
radii=[0.1, 0.2],
nsamples=[16, 32],
mlps=[[c_in, 64, 64, 128], [c_in, 64, 96, 128]])
c_out_1 = 128 + 128
c_in = c_out_1 + 3
self.SA_module2 = PointnetSAModuleMSG(
npoint=64,
radii=[0.2, 0.4],
nsamples=[16, 32],
mlps=[[c_in, 128, 196, 256], [c_in, 128, 196, 256]])
c_out_2 = 256 + 256
c_in = c_out_2 + 3
self.SA_module3 = PointnetSAModuleMSG(
npoint=16,
radii=[0.4, 0.8],
nsamples=[16, 32],
mlps=[[c_in, 256, 256, 512], [c_in, 256, 384, 512]])
c_out_3 = 512 + 512
self.FP_module3 = PointnetFPModule(mlp=[c_out_3 + c_out_2, 512, 512])
self.FP_module2 = PointnetFPModule(mlp=[512 + c_out_1, 512, 512])
self.FP_module1 = PointnetFPModule(mlp=[512 + c_out_0, 256, 256])
self.FP_module0 = PointnetFPModule(
mlp=[256 + input_channels - 3, 128, 128])
After Change
self.initial_dropout = RandomDropout(0.95, inplace=True)
self.initial_dropout = None
self.SA_modules = nn.ModuleList()
c_in = input_channels
self.SA_modules.append(
PointnetSAModuleMSG(
npoint=1024,
radii=[0.05, 0.1],
nsamples=[16, 32],
mlps=[[c_in, 16, 16, 32], [c_in, 32, 32, 64]]))
c_out_0 = 32 + 64
c_in = c_out_0 + 3
self.SA_modules.append(
PointnetSAModuleMSG(
npoint=256,
radii=[0.1, 0.2],
nsamples=[16, 32],
mlps=[[c_in, 64, 64, 128], [c_in, 64, 96, 128]]))
c_out_1 = 128 + 128
c_in = c_out_1 + 3
self.SA_modules.append(
PointnetSAModuleMSG(
npoint=64,
radii=[0.2, 0.4],
nsamples=[16, 32],
mlps=[[c_in, 128, 196, 256], [c_in, 128, 196, 256]]))
c_out_2 = 256 + 256
c_in = c_out_2 + 3
self.SA_modules.append(
PointnetSAModuleMSG(
npoint=16,
radii=[0.4, 0.8],
nsamples=[16, 32],
mlps=[[c_in, 256, 256, 512], [c_in, 256, 384, 512]]))
c_out_3 = 512 + 512
self.FP_modules = nn.ModuleList()
self.FP_modules.append(
PointnetFPModule(mlp=[256 + input_channels - 3, 128, 128]))
self.FP_modules.append(PointnetFPModule(mlp=[512 + c_out_0, 256, 256]))
self.FP_modules.append(PointnetFPModule(mlp=[512 + c_out_1, 512, 512]))
self.FP_modules.append(
PointnetFPModule(mlp=[c_out_3 + c_out_2, 512, 512]))
self.FC_layer = nn.Sequential(
pt_utils.Conv1d(128, 128, bn=True), nn.Dropout(),
pt_utils.Conv1d(128, num_classes, activation=None))
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 12
Instances
Project Name: erikwijmans/Pointnet2_PyTorch
Commit Name: 803d7e1fc61536c846c811bdee158bd21db36779
Time: 2017-12-26
Author: ewijmans2@gmail.com
File Name: models/Pointnet2SemSeg.py
Class Name: Pointnet2MSG
Method Name: __init__
Project Name: erikwijmans/Pointnet2_PyTorch
Commit Name: 803d7e1fc61536c846c811bdee158bd21db36779
Time: 2017-12-26
Author: ewijmans2@gmail.com
File Name: models/Pointnet2SemSeg.py
Class Name: Pointnet2MSG
Method Name: __init__