803d7e1fc61536c846c811bdee158bd21db36779,models/Pointnet2SemSeg.py,Pointnet2MSG,__init__,#Pointnet2MSG#,90

Before Change


        c_out_0 = 32 + 64

        c_in = c_out_0 + 3
        self.SA_module1 = PointnetSAModuleMSG(
            npoint=256,
            radii=[0.1, 0.2],
            nsamples=[16, 32],
            mlps=[[c_in, 64, 64, 128], [c_in, 64, 96, 128]])
        c_out_1 = 128 + 128

        c_in = c_out_1 + 3
        self.SA_module2 = PointnetSAModuleMSG(
            npoint=64,
            radii=[0.2, 0.4],
            nsamples=[16, 32],
            mlps=[[c_in, 128, 196, 256], [c_in, 128, 196, 256]])
        c_out_2 = 256 + 256

        c_in = c_out_2 + 3
        self.SA_module3 = PointnetSAModuleMSG(
            npoint=16,
            radii=[0.4, 0.8],
            nsamples=[16, 32],
            mlps=[[c_in, 256, 256, 512], [c_in, 256, 384, 512]])
        c_out_3 = 512 + 512

        self.FP_module3 = PointnetFPModule(mlp=[c_out_3 + c_out_2, 512, 512])
        self.FP_module2 = PointnetFPModule(mlp=[512 + c_out_1, 512, 512])
        self.FP_module1 = PointnetFPModule(mlp=[512 + c_out_0, 256, 256])
        self.FP_module0 = PointnetFPModule(
            mlp=[256 + input_channels - 3, 128, 128])

After Change


        self.initial_dropout = RandomDropout(0.95, inplace=True)
        self.initial_dropout = None

        self.SA_modules = nn.ModuleList()
        c_in = input_channels
        self.SA_modules.append(
            PointnetSAModuleMSG(
                npoint=1024,
                radii=[0.05, 0.1],
                nsamples=[16, 32],
                mlps=[[c_in, 16, 16, 32], [c_in, 32, 32, 64]]))
        c_out_0 = 32 + 64

        c_in = c_out_0 + 3
        self.SA_modules.append(
            PointnetSAModuleMSG(
                npoint=256,
                radii=[0.1, 0.2],
                nsamples=[16, 32],
                mlps=[[c_in, 64, 64, 128], [c_in, 64, 96, 128]]))
        c_out_1 = 128 + 128

        c_in = c_out_1 + 3
        self.SA_modules.append(
            PointnetSAModuleMSG(
                npoint=64,
                radii=[0.2, 0.4],
                nsamples=[16, 32],
                mlps=[[c_in, 128, 196, 256], [c_in, 128, 196, 256]]))
        c_out_2 = 256 + 256

        c_in = c_out_2 + 3
        self.SA_modules.append(
            PointnetSAModuleMSG(
                npoint=16,
                radii=[0.4, 0.8],
                nsamples=[16, 32],
                mlps=[[c_in, 256, 256, 512], [c_in, 256, 384, 512]]))
        c_out_3 = 512 + 512

        self.FP_modules = nn.ModuleList()
        self.FP_modules.append(
            PointnetFPModule(mlp=[256 + input_channels - 3, 128, 128]))
        self.FP_modules.append(PointnetFPModule(mlp=[512 + c_out_0, 256, 256]))
        self.FP_modules.append(PointnetFPModule(mlp=[512 + c_out_1, 512, 512]))
        self.FP_modules.append(
            PointnetFPModule(mlp=[c_out_3 + c_out_2, 512, 512]))

        self.FC_layer = nn.Sequential(
            pt_utils.Conv1d(128, 128, bn=True), nn.Dropout(),
            pt_utils.Conv1d(128, num_classes, activation=None))
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 12

Instances


Project Name: erikwijmans/Pointnet2_PyTorch
Commit Name: 803d7e1fc61536c846c811bdee158bd21db36779
Time: 2017-12-26
Author: ewijmans2@gmail.com
File Name: models/Pointnet2SemSeg.py
Class Name: Pointnet2MSG
Method Name: __init__


Project Name: erikwijmans/Pointnet2_PyTorch
Commit Name: 803d7e1fc61536c846c811bdee158bd21db36779
Time: 2017-12-26
Author: ewijmans2@gmail.com
File Name: models/Pointnet2SemSeg.py
Class Name: Pointnet2MSG
Method Name: __init__