ba67537f1e96f20573a113821b7cf1ff3342bae8,finmarketpy/economics/seasonality.py,Seasonality,bus_day_of_month_seasonality,#Seasonality#,69
Before Change
filter = Filter()
if price_index:
data_frame = data_frame.resample("B") // resample into business days
data_frame = calculations.calculate_returns(data_frame)
data_frame.index = pandas.to_datetime(data_frame.index)
data_frame = filter.filter_time_series_by_holidays(data_frame, cal)
monthly_seasonality = calculations.average_by_month_day_by_bus_day(data_frame, cal)
monthly_seasonality = monthly_seasonality.loc[month_list]
if partition_by_month:
monthly_seasonality = monthly_seasonality.unstack(level=0)
if add_average:
monthly_seasonality["Avg"] = monthly_seasonality.mean(axis=1)
if cum is True:
if partition_by_month:
monthly_seasonality.loc[0] = numpy.zeros(len(monthly_seasonality.columns))
// monthly_seasonality.index = monthly_seasonality.index + 1 // shifting index
monthly_seasonality = monthly_seasonality.sort_index()
monthly_seasonality = calculations.create_mult_index(monthly_seasonality)
return monthly_seasonality
After Change
filter = Filter()
if price_index:
data_frame = data_frame.resample("B").mean() // resample into business days
data_frame = calculations.calculate_returns(data_frame)
data_frame.index = pandas.to_datetime(data_frame.index)
data_frame = filter.filter_time_series_by_holidays(data_frame, cal)
monthly_seasonality = calculations.average_by_month_day_by_bus_day(data_frame, cal)
monthly_seasonality = monthly_seasonality.loc[month_list]
if partition_by_month:
monthly_seasonality = monthly_seasonality.unstack(level=0)
if add_average:
monthly_seasonality["Avg"] = monthly_seasonality.mean(axis=1)
if cum is True:
if partition_by_month:
monthly_seasonality.loc[0] = numpy.zeros(len(monthly_seasonality.columns))
// monthly_seasonality.index = monthly_seasonality.index + 1 // shifting index
monthly_seasonality = monthly_seasonality.sort_index()
monthly_seasonality = calculations.create_mult_index(monthly_seasonality)
return monthly_seasonality

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: cuemacro/finmarketpy
Commit Name: ba67537f1e96f20573a113821b7cf1ff3342bae8
Time: 2017-02-21
Author: saeedamen@hotmail.com
File Name: finmarketpy/economics/seasonality.py
Class Name: Seasonality
Method Name: bus_day_of_month_seasonality
Project Name: cuemacro/finmarketpy
Commit Name: ba67537f1e96f20573a113821b7cf1ff3342bae8
Time: 2017-02-21
Author: saeedamen@hotmail.com
File Name: finmarketpy/economics/seasonality.py
Class Name: Seasonality
Method Name: monthly_seasonality
Project Name: nilmtk/nilmtk
Commit Name: 74f2495372fe40fb8d3918e9fd6a01ebcfe31288
Time: 2018-03-18
Author: 10246101+PMeira@users.noreply.github.com
File Name: nilmtk/electric.py
Class Name: Electric
Method Name: activity_histogram