e2f021a5e4444befdb9e5926b96bc96c408faa85,examples/acp_regression_tree.py,,,#,24

Before Change


// Define models
// -----------------------------------------------------------------------------

models = {  "ACP-RandomSubSampler"  : AggregatedCp(
                                    IcpRegressor(
                                        RegressorNc(
                                            DecisionTreeRegressor())),
                                    RandomSubSampler()),
            "ACP-CrossSampler"      : AggregatedCp(
                                        IcpRegressor(
                                            RegressorNc(
                                                DecisionTreeRegressor())),
                                        CrossSampler()),
            "ACP-BootstrapSampler"  : AggregatedCp(
                                        IcpRegressor(
                                            RegressorNc(
                                                DecisionTreeRegressor())),
                                        BootstrapSampler())
      }

// -----------------------------------------------------------------------------
// Train, predict and evaluate
// -----------------------------------------------------------------------------
for name, model in models.iteritems():
    model.fit(data.data[train, :], data.target[train])
    prediction = model.predict(data.data[test, :])
    prediction_sign = model.predict(data.data[test, :],
                                    significance=significance)
    table = np.vstack((prediction_sign.T, truth)).T
    df = pd.DataFrame(table, columns=columns)
    print("\n{}".format(name))
    print("Error rate: {}".format(reg_mean_errors(prediction,
                                                  truth,

After Change


// Define models
// -----------------------------------------------------------------------------

models = {  "ACP-RandomSubSampler"  : AggregatedCp(
                                    IcpRegressor(
                                        RegressorNc(
                                            RegressorAdapter(DecisionTreeRegressor()))),
                                    RandomSubSampler()),
            "ACP-CrossSampler"      : AggregatedCp(
                                        IcpRegressor(
                                            RegressorNc(
                                                RegressorAdapter(DecisionTreeRegressor()))),
                                        CrossSampler()),
            "ACP-BootstrapSampler"  : AggregatedCp(
                                        IcpRegressor(
                                            RegressorNc(
                                                RegressorAdapter(DecisionTreeRegressor()))),
                                        BootstrapSampler())
      }

// -----------------------------------------------------------------------------
// Train, predict and evaluate
// -----------------------------------------------------------------------------
for name, model in models.iteritems():
    model.fit(data.data[train, :], data.target[train])
    prediction = model.predict(data.data[test, :])
    prediction_sign = model.predict(data.data[test, :],
                                    significance=significance)
    table = np.vstack((prediction_sign.T, truth)).T
    df = pd.DataFrame(table, columns=columns)
    print("\n{}".format(name))
    print("Error rate: {}".format(reg_mean_errors(prediction,
                                                  truth,
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: donlnz/nonconformist
Commit Name: e2f021a5e4444befdb9e5926b96bc96c408faa85
Time: 2016-09-09
Author: henrik.linusson@gmail.com
File Name: examples/acp_regression_tree.py
Class Name:
Method Name: