for file in train_chunk_files:
print("Using %s" % file)
train_dataset = DataSet.read(file)
n.train(train_dataset)
n.save_variables(save_file)
if n.get_global_step() > last_save_checkpoint + checkpoint_freq:
n.check_accuracy(test_dataset)
last_save_checkpoint = n.get_global_step()
After Change
print("Using %s" % file)
with timer("load dataset"):
train_dataset = DataSet.read(file)
with timer("training"):
n.train(train_dataset)
with timer("save model"):
n.save_variables(save_file)
if n.get_global_step() > last_save_checkpoint + checkpoint_freq:
with timer("test set evaluation"):