d1788c094f3bdd0e20ecbf9588ed7c9302a3c718,librosa/feature.py,,ifptrack,#,281

Before Change


    // Find plateaus in ifgram - stretches where delta IF is < thr:
    // ie, places where the same frequency is spread across adjacent bins
    idx_above = range(1, max_bin) + [max_bin - 1]
    idx_below = [0] + range(0, max_bin - 1)

    // expected increment per bin = sr/w, threshold at 3/4 that
    matches = (abs(if_gram[idx_above] - if_gram[idx_below])
               < (threshold * fft_res))

    // mask out any singleton bins (where both above and below are zero)
    matches = matches * ((matches[idx_above] > 0) | (matches[idx_below] > 0))

    pitches = np.zeros_like(matches, dtype=float)
    magnitudes = np.zeros_like(matches, dtype=float)

    // For each frame, extract all harmonic freqs & magnitudes
    for t in range(matches.shape[1]):

        // find nonzero regions in this vector
        // The mask selects out constant regions + active borders
        mask = ~np.pad(matches[:, t], 1, mode="constant")

        starts = np.argwhere(matches[:, t] & mask[:-2]).astype(int)
        ends = 1 + np.argwhere(matches[:, t] & mask[2:]).astype(int)

        // Set up inner loop
        frqs = np.zeros_like(starts, dtype=float)
        mags = np.zeros_like(starts, dtype=float)

        for i, (start_i, end_i) in enumerate(zip(starts, ends)):

            start_i = np.asscalar(start_i)
            end_i = np.asscalar(end_i)

            // Weight frequencies by energy
            weights = np.abs(D[start_i:end_i, t])
            mags[i] = weights.sum()

            // Compute the weighted average frequency.
            // FIXME: is this the right thing to do?
            // These are frequencies... shouldn"t this be a
            // weighted geometric average?
            frqs[i] = weights.dot(if_gram[start_i:end_i, t])
            if mags[i] > 0:
                frqs[i] /= mags[i]

        // Clip outside the ramp zones
        idx = (fmax[-1] < frqs) | (frqs < fmin[0])
        mags[idx] = 0
        frqs[idx] = 0

        // Ramp down at the high end
        idx = (fmax[-1] > frqs) & (frqs > fmax[0])
        mags[idx] *= (fmax[-1] - frqs[idx]) / (fmax[-1] - fmax[0])

        // Ramp up from the bottom end
        idx = (fmin[-1] > frqs) & (frqs > fmin[0])
        mags[idx] *= (frqs[idx] - fmin[0]) / (fmin[-1] - fmin[0])

        // Assign pitch and magnitude to their center bin
        bins = (starts + ends) / 2
        pitches[bins, t] = frqs
        magnitudes[bins, t] = mags

After Change


    // Find plateaus in ifgram - stretches where delta IF is < thr:
    // ie, places where the same frequency is spread across adjacent bins
    idx_above = list(range(1, max_bin)) + [max_bin - 1]
    idx_below = [0] + list(range(0, max_bin - 1))

    // expected increment per bin = sr/w, threshold at 3/4 that
    matches = (abs(if_gram[idx_above] - if_gram[idx_below])
               < (threshold * fft_res))

    // mask out any singleton bins (where both above and below are zero)
    matches = matches * ((matches[idx_above] > 0) | (matches[idx_below] > 0))

    pitches = np.zeros_like(matches, dtype=float)
    magnitudes = np.zeros_like(matches, dtype=float)

    // For each frame, extract all harmonic freqs & magnitudes
    for t in range(matches.shape[1]):

        // find nonzero regions in this vector
        // The mask selects out constant regions + active borders
        mask = ~np.pad(matches[:, t], 1, mode="constant")

        starts = np.argwhere(matches[:, t] & mask[:-2]).astype(int)
        ends = 1 + np.argwhere(matches[:, t] & mask[2:]).astype(int)

        // Set up inner loop
        frqs = np.zeros_like(starts, dtype=float)
        mags = np.zeros_like(starts, dtype=float)

        for i, (start_i, end_i) in enumerate(zip(starts, ends)):

            start_i = np.asscalar(start_i)
            end_i = np.asscalar(end_i)

            // Weight frequencies by energy
            weights = np.abs(D[start_i:end_i, t])
            mags[i] = weights.sum()

            // Compute the weighted average frequency.
            // FIXME: is this the right thing to do?
            // These are frequencies... shouldn"t this be a
            // weighted geometric average?
            frqs[i] = weights.dot(if_gram[start_i:end_i, t])
            if mags[i] > 0:
                frqs[i] /= mags[i]

        // Clip outside the ramp zones
        idx = (fmax[-1] < frqs) | (frqs < fmin[0])
        mags[idx] = 0
        frqs[idx] = 0

        // Ramp down at the high end
        idx = (fmax[-1] > frqs) & (frqs > fmax[0])
        mags[idx] *= (fmax[-1] - frqs[idx]) / (fmax[-1] - fmax[0])

        // Ramp up from the bottom end
        idx = (fmin[-1] > frqs) & (frqs > fmin[0])
        mags[idx] *= (frqs[idx] - fmin[0]) / (fmin[-1] - fmin[0])

        // Assign pitch and magnitude to their center bin
        bins = (starts + ends) / 2
        pitches[bins, t] = frqs
        magnitudes[bins, t] = mags
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: librosa/librosa
Commit Name: d1788c094f3bdd0e20ecbf9588ed7c9302a3c718
Time: 2014-11-07
Author: brian.mcfee@nyu.edu
File Name: librosa/feature.py
Class Name:
Method Name: ifptrack


Project Name: tkipf/gae
Commit Name: 6771b3d6e46bcf549a686683871d2e3b61a68860
Time: 2019-02-06
Author: oleksandr@adblockplus.org
File Name: gae/preprocessing.py
Class Name:
Method Name: mask_test_edges