cacfc17fa3154c5cc5efb785a145b78efaada019,lxmls/parsing/dependency_decoder.py,DependencyDecoder,chu_liu_edmonds,#DependencyDecoder#,188

Before Change


                wh_cyc = cycle

        cycle = wh_cyc
        cyc_nodes = list(cycle.keys())
        rep = cyc_nodes[0]

        if self.verbose:
            print("Found Cycle\n")
            for node in cyc_nodes:
                print("{0} ".format(node))
            print("\n")

        cyc_weight = 0.0
        for node in cyc_nodes:
            cyc_weight += scores[par[node], node]

        for i in range(0, nw+1):
            if 0 == curr_nodes[i] or (i in cycle):
                continue

            max1 = -np.inf
            wh1 = -1
            max2 = -np.inf
            wh2 = -1

            for j1 in cyc_nodes:
                if scores[j1, i] > max1:
                    max1 = scores[j1, i]
                    wh1 = j1

                // cycle weight + new edge - removal of old
                scr = cyc_weight + scores[i, j1] - scores[par[j1], j1]
                if scr > max2:
                    max2 = scr
                    wh2 = j1

            scores[rep, i] = max1
            old_I[rep, i] = old_I[wh1, i]
            old_O[rep, i] = old_O[wh1, i]
            scores[i, rep] = max2
            old_O[i, rep] = old_O[i, wh2]
            old_I[i, rep] = old_I[i, wh2]

        rep_cons = []
        for i in range(0, np.size(cyc_nodes)):
            rep_con = {}
            keys = sorted(reps[int(cyc_nodes[i])].keys())
            if self.verbose:
                print("{0}: ".format(cyc_nodes[i]))
            for key in keys:
                rep_con[key] = 0
                if self.verbose:
                    print("{0} ".format(key))
            rep_cons.append(rep_con)
            if self.verbose:
                print("\n")

        // don"t consider not representative nodes
        // these nodes have been folded
        for node in cyc_nodes[1:]:
            curr_nodes[node] = 0
            for key in reps[int(node)]:
                reps[int(rep)][key] = 0

        self.chu_liu_edmonds(scores, curr_nodes, old_I, old_O, final_edges, reps)

        // check each node in cycle, if one of its representatives
        // is a key in the final_edges, it is the one.
        if self.verbose:
            print(final_edges)
        wh = -1
        found = False
        for i in range(0, np.size(rep_cons)):
            if found:
                break
            for key in rep_cons[i]:
                if found:
                    break
                if key in final_edges:
                    wh = cyc_nodes[i]
                    found = True
        l = par[wh]
        while l != wh:
            ch = old_O[par[l]][l]
            pr = old_I[par[l]][l]
            final_edges[ch] = pr
            l = par[l]

After Change


                wh_cyc = cycle

        cycle = wh_cyc
        cyc_nodes = sorted(list(cycle.keys()))
        rep = cyc_nodes[0]

        if self.verbose:
            print("Found Cycle\n")
            for node in cyc_nodes:
                print("{0} ".format(node))
            print("\n")

        cyc_weight = 0.0
        for node in cyc_nodes:
            cyc_weight += scores[par[node], node]

        for i in range(0, nw+1):
            if 0 == curr_nodes[i] or (i in cycle):
                continue

            max1 = -np.inf
            wh1 = -1
            max2 = -np.inf
            wh2 = -1

            for j1 in cyc_nodes:
                if scores[j1, i] > max1:
                    max1 = scores[j1, i]
                    wh1 = j1

                // cycle weight + new edge - removal of old
                scr = cyc_weight + scores[i, j1] - scores[par[j1], j1]
                if scr > max2:
                    max2 = scr
                    wh2 = j1

            scores[rep, i] = max1
            old_I[rep, i] = old_I[wh1, i]
            old_O[rep, i] = old_O[wh1, i]
            scores[i, rep] = max2
            old_O[i, rep] = old_O[i, wh2]
            old_I[i, rep] = old_I[i, wh2]

        rep_cons = []
        for i in range(0, np.size(cyc_nodes)):
            rep_con = {}
            keys = sorted(reps[int(cyc_nodes[i])].keys())
            if self.verbose:
                print("{0}: ".format(cyc_nodes[i]))
            for key in keys:
                rep_con[key] = 0
                if self.verbose:
                    print("{0} ".format(key))
            rep_cons.append(rep_con)
            if self.verbose:
                print("\n")

        // don"t consider not representative nodes
        // these nodes have been folded
        for node in cyc_nodes[1:]:
            curr_nodes[node] = 0
            for key in reps[int(node)]:
                reps[int(rep)][key] = 0

        self.chu_liu_edmonds(scores, curr_nodes, old_I, old_O, final_edges, reps)

        // check each node in cycle, if one of its representatives
        // is a key in the final_edges, it is the one.
        if self.verbose:
            print(final_edges)
        wh = -1
        found = False
        for i in range(0, np.size(rep_cons)):
            if found:
                break
            for key in rep_cons[i]:
                if found:
                    break
                if key in final_edges:
                    wh = cyc_nodes[i]
                    found = True
        l = par[wh]
        while l != wh:
            ch = old_O[par[l]][l]
            pr = old_I[par[l]][l]
            final_edges[ch] = pr
            l = par[l]
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 2

Instances


Project Name: LxMLS/lxmls-toolkit
Commit Name: cacfc17fa3154c5cc5efb785a145b78efaada019
Time: 2018-03-22
Author: pedro.balage@priberam.pt
File Name: lxmls/parsing/dependency_decoder.py
Class Name: DependencyDecoder
Method Name: chu_liu_edmonds


Project Name: cve-search/cve-search
Commit Name: 91fae0409070bea58d6095feb14f010b43a32ec4
Time: 2015-03-18
Author: pieterjan.moreels@gmail.com
File Name: bin/db_mgmt_cpe_other_dictionary.py
Class Name:
Method Name:


Project Name: oddt/oddt
Commit Name: 62ae607594e946f3761497af63aba898629b3409
Time: 2017-04-26
Author: maciek@wojcikowski.pl
File Name: oddt/scoring/functions/NNScore.py
Class Name: nnscore
Method Name: train