81d6155030e5f58ce3bd1781dc939fd56d6eed01,train.py,,,#,17
Before Change
dataset = torchvision.datasets.ImageFolder(opt.dataroot,
transform=transforms.Compose([
transforms.Resize((opt.loadSize,opt.loadSize)),
transforms.RandomResizedCrop(opt.fineSize),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()]))
dataset_loader = torch.utils.data.DataLoader(dataset,batch_size=opt.batchSize, shuffle=True)
// data_loader = CreateDataLoader(opt)
// dataset = data_loader.load_data()
After Change
transforms.RandomChoice([transforms.Resize(opt.loadSize,interpolation=1),
transforms.Resize(opt.loadSize,interpolation=2),
transforms.Resize(opt.loadSize,interpolation=3),
transforms.Resize((opt.loadSize,opt.loadSize),interpolation=1),
transforms.Resize((opt.loadSize,opt.loadSize),interpolation=2),
transforms.Resize((opt.loadSize,opt.loadSize),interpolation=3)]),
transforms.RandomResizedCrop(opt.fineSize),
transforms.RandomChoice([transforms.ColorJitter(brightness=.1,contrast=.1,saturation=.1,hue=.1),
transforms.ColorJitter(brightness=0,contrast=0,saturation=.1,hue=.2),
transforms.ColorJitter(brightness=0,contrast=0,saturation=0,hue=0),]),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()]))
dataset_loader = torch.utils.data.DataLoader(dataset,batch_size=opt.batchSize, shuffle=True)
// data_loader = CreateDataLoader(opt)
// dataset = data_loader.load_data()
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 2
Instances
Project Name: richzhang/colorization-pytorch
Commit Name: 81d6155030e5f58ce3bd1781dc939fd56d6eed01
Time: 2018-08-24
Author: rzhang88@gmail.com
File Name: train.py
Class Name:
Method Name:
Project Name: kenshohara/3D-ResNets-PyTorch
Commit Name: 002c64b2ef562528043a1fd9961607415e1170aa
Time: 2018-11-21
Author: kensho.hara@aist.go.jp
File Name: main.py
Class Name:
Method Name: get_test_utils
Project Name: kenshohara/3D-ResNets-PyTorch
Commit Name: 3bdd430adce3bb4b345eb46348685345fbcb8ce6
Time: 2019-07-05
Author: kensho.hara@aist.go.jp
File Name: main.py
Class Name:
Method Name: get_test_utils