e6c8024fcceb9b47b82425a588988a63a365d544,09_softmax_mnist.py,,,#,12
Before Change
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST("../data", train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
After Change
test_dataset = datasets.MNIST(root="./data/",
train=False,
transform=transforms.ToTensor())
// Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 4
Instances
Project Name: hunkim/PyTorchZeroToAll
Commit Name: e6c8024fcceb9b47b82425a588988a63a365d544
Time: 2017-10-07
Author: hunkim@gmail.com
File Name: 09_softmax_mnist.py
Class Name:
Method Name:
Project Name: leftthomas/SRGAN
Commit Name: eab5e7909d647e363002b529e9d39911f4a2b028
Time: 2017-12-01
Author: leftthomas@qq.com
File Name: train2.py
Class Name:
Method Name: