ccbaf353bcd6121c50b4de0965177480b8f6eb48,copy_problem_100/rwa_model/train.py,,,#,25

Before Change


	xh_join = tf.concat(1, [x_step, h])	// Combine the features and hidden state into one tensor

	g = tf.matmul(xh_join, W_g)+b_g
	u = tf.matmul(x_step, W_u)+b_u
	q = tf.matmul(xh_join, W_a)+b_a

	q_greater = tf.maximum(q, 0.0)	// Greater of the exponent term or zero
	scale = tf.exp(-q_greater)
	a_scale = tf.exp(q-q_greater)

	n = tf.mul(n, scale)+tf.mul(tf.mul(u, tf.nn.tanh(g)), a_scale)	// Numerically stable update of numerator
	d = tf.mul(d, scale)+a_scale	// Numerically stable update of denominator
	h = activation(tf.div(n, d))

	ly = tf.matmul(h, W_o)+b_o

	error_step = tf.nn.softmax_cross_entropy_with_logits(ly, y[:,i,:])	// Cross-entropy cost function
	error += tf.select(tf.greater(l, i), error_step, tf.zeros([batch_size]))	// Include cost from this step only if the sequence length has not been exceeded

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Optimizer
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

// Optimizer
//
cost = tf.reduce_mean(tf.div(error, l))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Train
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

// Operation to initialize session
//
initializer = tf.global_variables_initializer()

// Open session
//
with tf.Session() as session:

	// Initialize variables
	//
	session.run(initializer)

	// Each training session represents one batch
	//
	for iteration in range(num_iterations):

		// Grab a batch of training data
		//
		xs, ls, ys = dp.train.batch(batch_size)
		feed = {x: xs, l: ls, y: ys}

		// Update parameters
		//
		out = session.run((cost,  optimizer), feed_dict=feed)
		print("Iteration:", iteration, "Dataset:", "train", "Cost:", out[0]/np.log(2.0))

		// Periodically run model on test data
		//
		if iteration%100 == 0:

			// Grab a batch of test data
			//
			xs, ls, ys = dp.test.batch(batch_size)
			feed = {x: xs, l: ls, y: ys}

			// Run model
			//
			out = session.run(cost, feed_dict=feed)
			print("Iteration:", iteration, "Dataset:", "test", "Cost:", out/np.log(2.0))

	// Save the trained model

After Change


n = tf.zeros([batch_size, num_cells])
d = tf.zeros([batch_size, num_cells])
h = tf.zeros([batch_size, num_cells])
a_max = tf.fill([batch_size, num_cells], -1E38)	// Start off with lowest number possible

// Define model
//
error = tf.zeros([batch_size])
h += activation(tf.expand_dims(s, 0))

for i in range(max_steps):

	x_step = x[:,i,:]
	xh_join = tf.concat(1, [x_step, h])	// Combine the features and hidden state into one tensor

	u = tf.matmul(x_step, W_u)+b_u
	g = tf.matmul(xh_join, W_g)+b_g
	a = tf.matmul(xh_join, W_a)+b_a

	z = tf.mul(u, tf.nn.tanh(g))

	a_newmax = tf.maximum(a_max, a)
	exp_diff = tf.exp(a_max-a_newmax)
	exp_scaled = tf.exp(a-a_newmax)

	n = tf.mul(n, exp_diff)+tf.mul(z, exp_scaled)	// Numerically stable update of numerator
	d = tf.mul(d, exp_diff)+exp_scaled	// Numerically stable update of denominator
	h = activation(tf.div(n, d))
	a_max = a_newmax

	ly = tf.matmul(h, W_o)+b_o

	error_step = tf.nn.softmax_cross_entropy_with_logits(ly, y[:,i,:])	// Cross-entropy cost function
	error += tf.select(tf.greater(l, i), error_step, tf.zeros([batch_size]))	// Include cost from this step only if the sequence length has not been exceeded

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Optimizer
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

// Optimizer
//
cost = tf.reduce_mean(tf.div(error, l))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Train
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

// Operation to initialize session
//
initializer = tf.global_variables_initializer()

// Open session
//
with tf.Session() as session:

	// Initialize variables
	//
	session.run(initializer)

	// Each training session represents one batch
	//
	for iteration in range(num_iterations):

		// Grab a batch of training data
		//
		xs, ls, ys = dp.train.batch(batch_size)
		feed = {x: xs, l: ls, y: ys}

		// Update parameters
		//
		out = session.run((cost,  optimizer), feed_dict=feed)
		print("Iteration:", iteration, "Dataset:", "train", "Cost:", out[0]/np.log(2.0))

		// Periodically run model on test data
		//
		if iteration%100 == 0:

			// Grab a batch of test data
			//
			xs, ls, ys = dp.test.batch(batch_size)
			feed = {x: xs, l: ls, y: ys}

			// Run model
			//
			out = session.run(cost, feed_dict=feed)
			print("Iteration:", iteration, "Dataset:", "test", "Cost:", out/np.log(2.0))

	// Save the trained model
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 15

Instances


Project Name: jostmey/rwa
Commit Name: ccbaf353bcd6121c50b4de0965177480b8f6eb48
Time: 2017-03-11
Author: jostmey@gmail.com
File Name: copy_problem_100/rwa_model/train.py
Class Name:
Method Name:


Project Name: jostmey/rwa
Commit Name: ccbaf353bcd6121c50b4de0965177480b8f6eb48
Time: 2017-03-11
Author: jostmey@gmail.com
File Name: adding_problem_1000/rwa_model/train.py
Class Name:
Method Name:


Project Name: jostmey/rwa
Commit Name: ccbaf353bcd6121c50b4de0965177480b8f6eb48
Time: 2017-03-11
Author: jostmey@gmail.com
File Name: copy_problem_100/rwa_model/train.py
Class Name:
Method Name:


Project Name: jostmey/rwa
Commit Name: ccbaf353bcd6121c50b4de0965177480b8f6eb48
Time: 2017-03-11
Author: jostmey@gmail.com
File Name: adding_problem_100/rwa_model/train.py
Class Name:
Method Name: