ebf2c8bb8e5f14d371d5052fafd3a0361fffae0b,doc/source/notebooks/advanced/varying_noise.pct.py,,,#,204
Before Change
set_trainable(model.likelihood, False)
opt = gpflow.optimizers.Scipy()
opt.minimize(objective_closure,
model.trainable_variables,
options=dict(maxiter=ci_niter(1000)))
// %% [markdown]
// We"ve now fitted the VGP model to the data, but without optimizing over the hyperparameters. Plotting the data, we see that the fit is not terrible, but hasn"t made use of our knowledge of the varying noise.
After Change
def objective_closure():
return - model.log_marginal_likelihood()
for _ in range(ci_niter(1000)):
natgrad.minimize(objective_closure, [(model.q_mu, model.q_sqrt)])
// %% [markdown]
// We"ve now fitted the VGP model to the data, but without optimizing over the hyperparameters. Plotting the data, we see that the fit is not terrible, but hasn"t made use of our knowledge of the varying noise.
// %%
// let"s do some plotting!
xx = np.linspace(-5, 5, 200)[:, None]
mu, var = model.predict_f(xx)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances Project Name: GPflow/GPflow
Commit Name: ebf2c8bb8e5f14d371d5052fafd3a0361fffae0b
Time: 2020-03-03
Author: joel.berkeley@prowler.io
File Name: doc/source/notebooks/advanced/varying_noise.pct.py
Class Name:
Method Name:
Project Name: GPflow/GPflow
Commit Name: ebf2c8bb8e5f14d371d5052fafd3a0361fffae0b
Time: 2020-03-03
Author: joel.berkeley@prowler.io
File Name: doc/source/notebooks/advanced/varying_noise.pct.py
Class Name:
Method Name:
Project Name: GPflow/GPflow
Commit Name: ebf2c8bb8e5f14d371d5052fafd3a0361fffae0b
Time: 2020-03-03
Author: joel.berkeley@prowler.io
File Name: doc/source/notebooks/advanced/varying_noise.pct.py
Class Name:
Method Name: