c6b8a28f10e865c8444e9e8ffb6eee5dbd428192,test/augmenters/test_blur.py,Test_blur_gaussian_,test_other_dtypes_sigma_075,#Test_blur_gaussian_#,190

Before Change


             "int8", "int16", "int32",
             "float16", "float32", "float64"]
        ]
        for backend, dtypes_to_test in zip(["scipy", "cv2"], dtypes_to_test_list):
            // bool
            if "bool" in dtypes_to_test:
                with self.subTest(backend=backend, dtype="bool"):
                    image = np.zeros((5, 5), dtype=bool)
                    image[2, 2] = True
                    image_aug = iaa.blur_gaussian_(np.copy(image), sigma=0.75, backend=backend)
                    assert image_aug.dtype.name == "bool"
                    assert np.all(image_aug == (mask > 0.5))

            // uint, int
            for dtype in [np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64]:
                dtype = np.dtype(dtype)
                if dtype.name in dtypes_to_test:
                    with self.subTest(backend=backend, dtype=dtype.name):
                        min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype)
                        dynamic_range = max_value - min_value

                        value = int(center_value + 0.4 * max_value)
                        image = np.zeros((5, 5), dtype=dtype)
                        image[2, 2] = value
                        image_aug = iaa.blur_gaussian_(image, sigma=0.75, backend=backend)
                        expected = (mask * value).astype(dtype)
                        diff = np.abs(image_aug.astype(np.int64) - expected.astype(np.int64))
                        assert image_aug.shape == mask.shape
                        assert image_aug.dtype.type == dtype
                        if dtype.itemsize <= 1:
                            assert np.max(diff) <= 4
                        else:
                            assert np.max(diff) <= 0.01 * dynamic_range

            // float
            values = [5000, 1000**1, 1000**2, 1000**3]
            for dtype, value in zip([np.float16, np.float32, np.float64, np.float128], values):
                dtype = np.dtype(dtype)
                if dtype.name in dtypes_to_test:
                    with self.subTest(backend=backend, dtype=dtype.name):
                        image = np.zeros((5, 5), dtype=dtype)
                        image[2, 2] = value
                        image_aug = iaa.blur_gaussian_(image, sigma=0.75, backend=backend)
                        expected = (mask * value).astype(dtype)
                        diff = np.abs(image_aug.astype(np.float128) - expected.astype(np.float128))
                        assert image_aug.shape == mask.shape

After Change


             "int8", "int16", "int32",
             "float16", "float32", "float64"]
        ]
        gen = zip(["scipy", "cv2"], dtypes_to_test_list)

        for backend, dtypes_to_test in gen:
            // bool
            if "bool" in dtypes_to_test:
                with self.subTest(backend=backend, dtype="bool"):
                    image = np.zeros((5, 5), dtype=bool)
                    image[2, 2] = True
                    image_aug = iaa.blur_gaussian_(
                        np.copy(image), sigma=0.75, backend=backend)
                    assert image_aug.dtype.name == "bool"
                    assert np.all(image_aug == (mask > 0.5))

            // uint, int
            uint_dts = [np.uint8, np.uint16, np.uint32, np.uint64]
            int_dts = [np.int8, np.int16, np.int32, np.int64]
            for dtype in uint_dts + int_dts:
                dtype = np.dtype(dtype)
                if dtype.name in dtypes_to_test:
                    with self.subTest(backend=backend, dtype=dtype.name):
                        min_value, center_value, max_value = \
                            iadt.get_value_range_of_dtype(dtype)
                        dynamic_range = max_value - min_value

                        value = int(center_value + 0.4 * max_value)
                        image = np.zeros((5, 5), dtype=dtype)
                        image[2, 2] = value
                        image_aug = iaa.blur_gaussian_(
                            image, sigma=0.75, backend=backend)
                        expected = (mask * value).astype(dtype)
                        diff = np.abs(image_aug.astype(np.int64)
                                      - expected.astype(np.int64))
                        assert image_aug.shape == mask.shape
                        assert image_aug.dtype.type == dtype
                        if dtype.itemsize <= 1:
                            assert np.max(diff) <= 4
                        else:
                            assert np.max(diff) <= 0.01 * dynamic_range

            // float
            float_dts = [np.float16, np.float32, np.float64, np.float128]
            values = [5000, 1000**1, 1000**2, 1000**3]
            for dtype, value in zip(float_dts, values):
                dtype = np.dtype(dtype)
                if dtype.name in dtypes_to_test:
                    with self.subTest(backend=backend, dtype=dtype.name):
                        image = np.zeros((5, 5), dtype=dtype)
                        image[2, 2] = value
                        image_aug = iaa.blur_gaussian_(
                            image, sigma=0.75, backend=backend)
                        expected = (mask * value).astype(dtype)
                        diff = np.abs(image_aug.astype(np.float128)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 2

Instances


Project Name: aleju/imgaug
Commit Name: c6b8a28f10e865c8444e9e8ffb6eee5dbd428192
Time: 2019-08-25
Author: kontakt@ajung.name
File Name: test/augmenters/test_blur.py
Class Name: Test_blur_gaussian_
Method Name: test_other_dtypes_sigma_075


Project Name: aleju/imgaug
Commit Name: c6b8a28f10e865c8444e9e8ffb6eee5dbd428192
Time: 2019-08-25
Author: kontakt@ajung.name
File Name: test/augmenters/test_blur.py
Class Name: Test_blur_gaussian_
Method Name: test_other_dtypes_sigma_0


Project Name: aleju/imgaug
Commit Name: f98d7f30e941330e575412670a310a979bc21eba
Time: 2019-08-16
Author: kontakt@ajung.name
File Name: imgaug/augmenters/geometric.py
Class Name: Affine
Method Name: _augment_heatmaps


Project Name: aleju/imgaug
Commit Name: 6d27324706e7faa19c4e91255dec6c99d9c8526d
Time: 2019-08-31
Author: kontakt@ajung.name
File Name: test/augmenters/test_mixed_files.py
Class Name:
Method Name: test_keypoint_augmentation