ef02e000358699dd92b9640510c71af2b5152e52,niftynet/layer/loss_segmentation.py,,generalised_dice_loss,#,164

Before Change



    if weight_map is not None:
        n_classes = prediction.shape[1].value
        weight_map_nclasses = tf.reshape(
            tf.tile(weight_map, [n_classes]), prediction.get_shape())
        ref_vol = tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot, reduction_axes=[0])

        intersect = tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot * prediction, reduction_axes=[0])
        seg_vol = tf.reduce_sum(
            tf.multiply(weight_map_nclasses, prediction), 0)
    else:
        ref_vol = tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
        intersect = tf.sparse_reduce_sum(one_hot * prediction,
                                         reduction_axes=[0])
        seg_vol = tf.reduce_sum(prediction, 0)
    if type_weight == "Square":
        weights = tf.reciprocal(tf.square(ref_vol))
    elif type_weight == "Simple":
        weights = tf.reciprocal(ref_vol)
    elif type_weight == "Uniform":
        weights = tf.ones_like(ref_vol)
    else:
        raise ValueError("The variable type_weight \"{}\""
                         "is not defined.".format(type_weight))
    new_weights = tf.where(tf.is_inf(weights), tf.zeros_like(weights), weights)
    weights = tf.where(tf.is_inf(weights), tf.ones_like(weights) *
                       tf.reduce_max(new_weights), weights)
    generalised_dice_numerator = \
        2 * tf.reduce_sum(tf.multiply(weights, intersect))
    generalised_dice_denominator = \
        tf.reduce_sum(tf.multiply(weights, seg_vol + ref_vol)) + 1e-6
    generalised_dice_score = \
        generalised_dice_numerator / generalised_dice_denominator
    return 1 - generalised_dice_score

After Change


    one_hot = labels_to_one_hot(ground_truth, tf.shape(prediction)[-1])

    if weight_map is not None:
        n_classes = prediction.shape[1].value
        // weight_map_nclasses = tf.reshape(
        //     tf.tile(weight_map, [n_classes]), prediction.get_shape())
        weight_map_nclasses = tf.tile(
            tf.expand_dims(tf.reshape(weight_map, [-1]), 1), [1, n_classes])
        ref_vol = tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot, reduction_axes=[0])

        intersect = tf.sparse_reduce_sum(
            weight_map_nclasses * one_hot * prediction, reduction_axes=[0])
        seg_vol = tf.reduce_sum(
            tf.multiply(weight_map_nclasses, prediction), 0)
    else:
        ref_vol = tf.sparse_reduce_sum(one_hot, reduction_axes=[0])
        intersect = tf.sparse_reduce_sum(one_hot * prediction,
                                         reduction_axes=[0])
        seg_vol = tf.reduce_sum(prediction, 0)
    if type_weight == "Square":
        weights = tf.reciprocal(tf.square(ref_vol))
    elif type_weight == "Simple":
        weights = tf.reciprocal(ref_vol)
    elif type_weight == "Uniform":
        weights = tf.ones_like(ref_vol)
    else:
        raise ValueError("The variable type_weight \"{}\""
                         "is not defined.".format(type_weight))
    new_weights = tf.where(tf.is_inf(weights), tf.zeros_like(weights), weights)
    weights = tf.where(tf.is_inf(weights), tf.ones_like(weights) *
                       tf.reduce_max(new_weights), weights)
    generalised_dice_numerator = \
        2 * tf.reduce_sum(tf.multiply(weights, intersect))
    // generalised_dice_denominator = \
    //     tf.reduce_sum(tf.multiply(weights, seg_vol + ref_vol)) + 1e-6
    generalised_dice_denominator = tf.reduce_sum(
        tf.multiply(weights,  tf.maximum(seg_vol + ref_vol, 1)))
    generalised_dice_score = \
        generalised_dice_numerator / generalised_dice_denominator
    generalised_dice_score = tf.where(tf.is_nan(generalised_dice_score), 1.0,
                                      generalised_dice_score)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 8

Instances


Project Name: NifTK/NiftyNet
Commit Name: ef02e000358699dd92b9640510c71af2b5152e52
Time: 2018-07-25
Author: carole.sudre.12@ucl.ac.uk
File Name: niftynet/layer/loss_segmentation.py
Class Name:
Method Name: generalised_dice_loss


Project Name: NifTK/NiftyNet
Commit Name: ef02e000358699dd92b9640510c71af2b5152e52
Time: 2018-07-25
Author: carole.sudre.12@ucl.ac.uk
File Name: niftynet/layer/loss_segmentation.py
Class Name:
Method Name: generalised_dice_loss


Project Name: NifTK/NiftyNet
Commit Name: ef02e000358699dd92b9640510c71af2b5152e52
Time: 2018-07-25
Author: carole.sudre.12@ucl.ac.uk
File Name: niftynet/layer/loss_segmentation.py
Class Name:
Method Name: dice


Project Name: NifTK/NiftyNet
Commit Name: ef02e000358699dd92b9640510c71af2b5152e52
Time: 2018-07-25
Author: carole.sudre.12@ucl.ac.uk
File Name: niftynet/layer/loss_segmentation.py
Class Name:
Method Name: dice_nosquare