3bf6bccfd34eeac554446eda3cfe2ae87355ba61,luminoth/models/fasterrcnn/rpn.py,RPN,_build,#RPN#,78

Before Change



        prediction_dict = {}

        rpn_feature = self._rpn_activation(self._rpn(conv_feature_map))

        // Then we apply separate conv layers for classification and regression.
        rpn_cls_score_original = self._rpn_cls(rpn_feature)
        rpn_bbox_pred_original = self._rpn_bbox(rpn_feature)
        // rpn_cls_score_original has shape (1, H, W, num_anchors * 2)
        // rpn_bbox_pred_original has shape (1, H, W, num_anchors * 4)
        // where H, W are height and width of the pretrained feature map.

        // Convert (flatten) `rpn_cls_score_original` which has two scalars per
        // anchor per location to be able to apply softmax.
        rpn_cls_score = tf.reshape(rpn_cls_score_original, [-1, 2])
        // Now that `rpn_cls_score` has shape (H * W * num_anchors, 2), we apply
        // softmax to the last dim.
        rpn_cls_prob = tf.nn.softmax(rpn_cls_score)

        prediction_dict["rpn_cls_prob"] = rpn_cls_prob
        prediction_dict["rpn_cls_score"] = rpn_cls_score

        // Flatten bounding box delta prediction for easy manipulation.
        // We end up with `rpn_bbox_pred` having shape (H * W * num_anchors, 4).
        rpn_bbox_pred = tf.reshape(rpn_bbox_pred_original, [-1, 4])

        prediction_dict["rpn_bbox_pred"] = rpn_bbox_pred

        // We have to convert bbox deltas to usable bounding boxes and remove
        // redundant ones using Non Maximum Suppression (NMS).
        proposal_prediction = self._proposal(
            rpn_cls_prob, rpn_bbox_pred, all_anchors, im_shape)

        prediction_dict["proposals"] = proposal_prediction["nms_proposals"]
        prediction_dict["scores"] = proposal_prediction["nms_proposals_scores"]

        if self._debug:
            prediction_dict["proposal_prediction"] = proposal_prediction

        if gt_boxes is not None:
            // When training we use a separate module to calculate the target

After Change



        prediction_dict = {}

        rpn_feature = self._rpn(conv_feature_map)

        // Then we apply separate conv layers for classification and regression.
        rpn_cls_score_original = self._rpn_cls(rpn_feature)
        rpn_bbox_pred_original = self._rpn_bbox(rpn_feature)
        // rpn_cls_score_original has shape (1, H, W, num_anchors * 2)
        // rpn_bbox_pred_original has shape (1, H, W, num_anchors * 4)
        // where H, W are height and width of the pretrained feature map.

        // Convert (flatten) `rpn_cls_score_original` which has two scalars per
        // anchor per location to be able to apply softmax.
        rpn_cls_score = tf.reshape(rpn_cls_score_original, [-1, 2])
        // Now that `rpn_cls_score` has shape (H * W * num_anchors, 2), we apply
        // softmax to the last dim.
        rpn_cls_prob = tf.nn.softmax(rpn_cls_score)

        prediction_dict["rpn_cls_prob"] = rpn_cls_prob
        prediction_dict["rpn_cls_score"] = rpn_cls_score

        // Flatten bounding box delta prediction for easy manipulation.
        // We end up with `rpn_bbox_pred` having shape (H * W * num_anchors, 4).
        rpn_bbox_pred = tf.reshape(rpn_bbox_pred_original, [-1, 4])

        prediction_dict["rpn_bbox_pred"] = rpn_bbox_pred

        // We have to convert bbox deltas to usable bounding boxes and remove
        // redundant ones using Non Maximum Suppression (NMS).
        proposal_prediction = self._proposal(
            rpn_cls_prob, rpn_bbox_pred, all_anchors, im_shape)

        prediction_dict["proposals"] = proposal_prediction["nms_proposals"]
        prediction_dict["scores"] = proposal_prediction["nms_proposals_scores"]

        if self._debug:
            prediction_dict["proposal_prediction"] = proposal_prediction

        if gt_boxes is not None:
            // When training we use a separate module to calculate the target
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 14

Instances


Project Name: tryolabs/luminoth
Commit Name: 3bf6bccfd34eeac554446eda3cfe2ae87355ba61
Time: 2017-10-09
Author: javirey@gmail.com
File Name: luminoth/models/fasterrcnn/rpn.py
Class Name: RPN
Method Name: _build


Project Name: tryolabs/luminoth
Commit Name: 598b27768e09c392e10b74487fd2a52d481c49c3
Time: 2017-10-09
Author: javirey@gmail.com
File Name: luminoth/models/fasterrcnn/rpn.py
Class Name: RPN
Method Name: _build


Project Name: tryolabs/luminoth
Commit Name: 4b2b7a8258b04bcf1fb7fc2275671a07a69edb31
Time: 2018-02-08
Author: javirey@gmail.com
File Name: luminoth/models/fasterrcnn/rpn.py
Class Name: RPN
Method Name: _build