13c724a1b3dad1d5eddb51b851c39671982dbb69,sonnet/python/modules/conv.py,Conv2D,_build,#Conv2D#,335
Before Change
self._input_channels = input_channels
if not tf.float32.is_compatible_with(inputs.dtype):
raise TypeError(
"Input must have dtype tf.float32, but dtype was {}".format(
inputs.dtype))
weight_shape = (
self._kernel_shape[0],
self._kernel_shape[1],
self._input_channels,
self.output_channels)
bias_shape = (self.output_channels,)
if "w" not in self._initializers:
self._initializers["w"] = create_weight_initializer(weight_shape[:3])
if "b" not in self._initializers and self._use_bias:
self._initializers["b"] = create_bias_initializer(bias_shape)
self._w = tf.get_variable("w",
shape=weight_shape,
initializer=self._initializers["w"],
partitioner=self._partitioners.get("w", None),
regularizer=self._regularizers.get("w", None))
w = self._w
if self._mask is not None:
mask = self._mask
mask_shape = mask.shape.as_list()
if len(mask_shape) == 2:
if mask_shape != list(self._kernel_shape):
raise base.IncompatibleShapeError(
"Invalid mask shape: {}".format(tuple(mask_shape)))
mask = tf.expand_dims(tf.expand_dims(mask, -1), -1)
elif mask_shape != list(weight_shape):
raise base.IncompatibleShapeError(
"Invalid mask shape: {}".format(tuple(mask_shape)))
w *= mask
outputs = tf.nn.convolution(inputs, w, strides=self._stride,
padding=self._padding, dilation_rate=self._rate,
data_format=self._data_format)
if self._use_bias:
self._b = tf.get_variable("b",
shape=bias_shape,
initializer=self._initializers["b"],
partitioner=self._partitioners.get("b", None),
regularizer=self._regularizers.get("b", None))
outputs = tf.nn.bias_add(outputs, self._b, data_format=self._data_format)
return outputs
After Change
self._input_channels,
self.output_channels)
bias_shape = (self.output_channels,)
if "w" not in self._initializers:
self._initializers["w"] = create_weight_initializer(weight_shape[:3],
dtype=inputs.dtype)
if "b" not in self._initializers and self._use_bias:
self._initializers["b"] = create_bias_initializer(bias_shape,
dtype=inputs.dtype)
self._w = tf.get_variable("w",
shape=weight_shape,
dtype=inputs.dtype,
initializer=self._initializers["w"],
partitioner=self._partitioners.get("w", None),
regularizer=self._regularizers.get("w", None))
w = self._w
if self._mask is not None:
mask = self._mask
mask_shape = mask.shape.as_list()
if len(mask_shape) == 2:
if mask_shape != list(self._kernel_shape):
raise base.IncompatibleShapeError(
"Invalid mask shape: {}".format(tuple(mask_shape)))
mask = tf.expand_dims(tf.expand_dims(mask, -1), -1)
elif mask_shape != list(weight_shape):
raise base.IncompatibleShapeError(
"Invalid mask shape: {}".format(tuple(mask_shape)))
w *= mask
outputs = tf.nn.convolution(inputs, w, strides=self._stride,
padding=self._padding, dilation_rate=self._rate,
data_format=self._data_format)
if self._use_bias:
self._b = tf.get_variable("b",
shape=bias_shape,
dtype=inputs.dtype,
initializer=self._initializers["b"],
partitioner=self._partitioners.get("b", None),
regularizer=self._regularizers.get("b", None))
outputs = tf.nn.bias_add(outputs, self._b, data_format=self._data_format)
return outputs
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 17
Instances
Project Name: deepmind/sonnet
Commit Name: 13c724a1b3dad1d5eddb51b851c39671982dbb69
Time: 2017-12-18
Author: noreply@google.com
File Name: sonnet/python/modules/conv.py
Class Name: Conv2D
Method Name: _build
Project Name: deepmind/sonnet
Commit Name: 13c724a1b3dad1d5eddb51b851c39671982dbb69
Time: 2017-12-18
Author: noreply@google.com
File Name: sonnet/python/modules/conv.py
Class Name: Conv2D
Method Name: _build
Project Name: deepmind/sonnet
Commit Name: 13c724a1b3dad1d5eddb51b851c39671982dbb69
Time: 2017-12-18
Author: noreply@google.com
File Name: sonnet/python/modules/conv.py
Class Name: Conv1D
Method Name: _build
Project Name: deepmind/sonnet
Commit Name: 13c724a1b3dad1d5eddb51b851c39671982dbb69
Time: 2017-12-18
Author: noreply@google.com
File Name: sonnet/python/modules/conv.py
Class Name: CausalConv1D
Method Name: _build