cbe4688621b89f0b8a732a9cb0dbee377511148c,imgaug/augmenters/weather.py,SnowflakesLayer,draw_on_image,#SnowflakesLayer#,848

Before Change



        height, width, nb_channels = image.shape
        downscale_factor = np.clip(1.0 - flake_size_sample, 0.001, 1.0)
        height_down = int(height*downscale_factor)
        width_down = int(width*downscale_factor)
        noise = self._generate_noise(
            height_down,
            width_down,
            self.density,
            rss[0]
        )

        // gate the sampled noise via noise in range [0.0, 1.0]
        // this leads to less flakes in some areas of the image and more in
        // other areas
        gate_noise = iap.Beta(1.0, 1.0 - self.density_uniformity)
        noise = self._gate(noise, gate_noise, self.gate_noise_size, rss[1])
        noise = ia.imresize_single_image(noise, (height, width),
                                         interpolation="cubic")

        // apply a bit of gaussian blur and then motion blur according to
        // angle and speed
        sigma = max(height, width) * blur_sigma_fraction_sample
        sigma = np.clip(sigma,
                        self.blur_sigma_limits[0], self.blur_sigma_limits[1])
        noise_small_blur = self._blur(noise, sigma)
        noise_small_blur = self._motion_blur(noise_small_blur,
                                             angle=angle_sample,
                                             speed=speed_sample,
                                             random_state=random_state)

        // use contrast adjustment of noise to make the flake size a bit less
        // uniform then readjust the noise values to make them more visible
        // again
        gain = 1.0 + 2*(1 - flake_size_uniformity_sample)
        gain_adj = 1.0 + 5*(1 - flake_size_uniformity_sample)
        noise_small_blur = contrast.GammaContrast(gain).augment_image(
            noise_small_blur)
        noise_small_blur = noise_small_blur.astype(np.float32) * gain_adj
        noise_small_blur_rgb = np.tile(
            noise_small_blur[..., np.newaxis], (1, 1, nb_channels))

        // blend:
        // sum for a bit of glowy, hardly visible flakes
        // max for the main flakes
        image_f32 = image.astype(np.float32)
        image_f32 = self._blend_by_sum(
            image_f32, (0.1 + 20*speed_sample) * noise_small_blur_rgb)
        image_f32 = self._blend_by_max(
            image_f32, (1.0 + 20*speed_sample) * noise_small_blur_rgb)
        return image_f32

After Change



        height, width, nb_channels = image.shape
        downscale_factor = np.clip(1.0 - flake_size_sample, 0.001, 1.0)
        height_down = max(1, int(height*downscale_factor))
        width_down = max(1, int(width*downscale_factor))
        noise = self._generate_noise(
            height_down,
            width_down,
            self.density,
            rss[0]
        )

        // gate the sampled noise via noise in range [0.0, 1.0]
        // this leads to less flakes in some areas of the image and more in
        // other areas
        gate_noise = iap.Beta(1.0, 1.0 - self.density_uniformity)
        noise = self._gate(noise, gate_noise, self.gate_noise_size, rss[1])
        noise = ia.imresize_single_image(noise, (height, width),
                                         interpolation="cubic")

        // apply a bit of gaussian blur and then motion blur according to
        // angle and speed
        sigma = max(height, width) * blur_sigma_fraction_sample
        sigma = np.clip(sigma,
                        self.blur_sigma_limits[0], self.blur_sigma_limits[1])
        noise_small_blur = self._blur(noise, sigma)
        noise_small_blur = self._motion_blur(noise_small_blur,
                                             angle=angle_sample,
                                             speed=speed_sample,
                                             random_state=random_state)

        // use contrast adjustment of noise to make the flake size a bit less
        // uniform then readjust the noise values to make them more visible
        // again
        gain = 1.0 + 2*(1 - flake_size_uniformity_sample)
        gain_adj = 1.0 + 5*(1 - flake_size_uniformity_sample)
        noise_small_blur = contrast.GammaContrast(gain).augment_image(
            noise_small_blur)
        noise_small_blur = noise_small_blur.astype(np.float32) * gain_adj
        noise_small_blur_rgb = np.tile(
            noise_small_blur[..., np.newaxis], (1, 1, nb_channels))

        // blend:
        // sum for a bit of glowy, hardly visible flakes
        // max for the main flakes
        image_f32 = image.astype(np.float32)
        image_f32 = self._blend_by_sum(
            image_f32, (0.1 + 20*speed_sample) * noise_small_blur_rgb)
        image_f32 = self._blend_by_max(
            image_f32, (1.0 + 20*speed_sample) * noise_small_blur_rgb)
        return image_f32
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 2

Instances


Project Name: aleju/imgaug
Commit Name: cbe4688621b89f0b8a732a9cb0dbee377511148c
Time: 2019-10-29
Author: olivercoleman@airsight.com.au
File Name: imgaug/augmenters/weather.py
Class Name: SnowflakesLayer
Method Name: draw_on_image


Project Name: chainer/chainercv
Commit Name: 36ef435f08c47e867e9988613ff55f434fb216ad
Time: 2017-05-29
Author: yuyuniitani@gmail.com
File Name: chainercv/links/model/faster_rcnn/utils/proposal_target_creator.py
Class Name: ProposalTargetCreator
Method Name: __call__