h = _pool_without_cudnn(p1, F.relu(self.conv1_bn(self.conv1(h))))
h = _pool_without_cudnn(p2, F.relu(self.conv2_bn(self.conv2(h))))
h = _pool_without_cudnn(p3, F.relu(self.conv3_bn(self.conv3(h))))
h = _pool_without_cudnn(p4, F.relu(self.conv4_bn(self.conv4(h))))h = self._upsampling_2d(h, p4)
h = self.conv_decode4_bn(self.conv_decode4(h))
h = self._upsampling_2d(h, p3)
h = self.conv_decode3_bn(self.conv_decode3(h))
h = self._upsampling_2d(h, p2)
h = self.conv_decode2_bn(self.conv_decode2(h))
h = self._upsampling_2d(h, p1)
h = self.conv_decode1_bn(self.conv_decode1(h))
score = self.conv_classifier(h)
return score
def predict(self, imgs):
After Change
F.relu(self.conv2_bn(self.conv2(h))), 2, 2, return_indices=True)
h, indices3 = F.max_pooling_2d(
F.relu(self.conv3_bn(self.conv3(h))), 2, 2, return_indices=True)
h, indices4 = F.max_pooling_2d(
F.relu(self.conv4_bn(self.conv4(h))), 2, 2, return_indices=True)h = self._upsampling_2d(h, indices4)
h = self.conv_decode4_bn(self.conv_decode4(h))
h = self._upsampling_2d(h, indices3)
h = self.conv_decode3_bn(self.conv_decode3(h))
h = self._upsampling_2d(h, indices2)
h = self.conv_decode2_bn(self.conv_decode2(h))
h = self._upsampling_2d(h, indices1)
h = self.conv_decode1_bn(self.conv_decode1(h))
score = self.conv_classifier(h)
return score
def predict(self, imgs):