5dc4b6686e5885df7d53c6162773ece336994feb,rllib/agents/dqn/dqn_torch_model.py,DQNTorchModel,__init__,#DQNTorchModel#,13
Before Change
// Dueling case: Build the shared (advantages and value) fc-network.
for i, n in enumerate(q_hiddens):
advantage_module.add_module("dueling_A_{}".format(i),
nn.Linear(ins, n))
value_module.add_module("dueling_V_{}".format(i),
nn.Linear(ins, n))
// Add activations if necessary.
if dueling_activation == "relu":
After Change
// Dueling case: Build the shared (advantages and value) fc-network.
for i, n in enumerate(q_hiddens):
if use_noisy:
advantage_module.add_module(
"dueling_A_{}".format(i),
NoisyLayer(
ins, n, sigma0=self.sigma0,
activation=dueling_activation))
value_module.add_module(
"dueling_V_{}".format(i),
NoisyLayer(
ins, n, sigma0=self.sigma0,
activation=dueling_activation))
else:
advantage_module.add_module(
"dueling_A_{}".format(i),
SlimFC(ins, n, activation_fn=dueling_activation))
value_module.add_module(
"dueling_V_{}".format(i),
SlimFC(ins, n, activation_fn=dueling_activation))
// Add LayerNorm after each Dense.
if add_layer_norm:
advantage_module.add_module(
"LayerNorm_A_{}".format(i), nn.LayerNorm(n))
value_module.add_module(
"LayerNorm_V_{}".format(i), nn.LayerNorm(n))
ins = n
// Actual Advantages layer (nodes=num-actions).
if use_noisy:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: ray-project/ray
Commit Name: 5dc4b6686e5885df7d53c6162773ece336994feb
Time: 2020-07-25
Author: sven@anyscale.io
File Name: rllib/agents/dqn/dqn_torch_model.py
Class Name: DQNTorchModel
Method Name: __init__
Project Name: ray-project/ray
Commit Name: 14160ca58c8d37ea4c08639be12c6569a80eb190
Time: 2020-07-10
Author: sven@anyscale.io
File Name: rllib/agents/dqn/dqn_torch_model.py
Class Name: DQNTorchModel
Method Name: __init__