- variance: [R, N, P], [R, N, P, P], [R, P, N, N], [R, N, P, N, P]
R = f.shape[1]
M, N, K = [Kmn.shape[i] for i in range(Kmn.shape.ndims)]
Lm = tf.linalg.cholesky(Kmm)
// Compute the projection matrix A
// Lm: [M, M] Kmn: [M, K]
After Change
- variance: [R, N, P], [R, N, P, P], [R, P, N, N], [R, N, P, N, P]
R = tf.shape(f)[1]
M, N, K = tf.unstack(tf.shape(Kmn), num=Kmn.shape.ndims, axis=0)
Lm = tf.linalg.cholesky(Kmm)
// Compute the projection matrix A
// Lm: [M, M] Kmn: [M, K]