5b3af9ff43bc61f8034f1202a2b57f21c8ee3771,autokeras/graph.py,Graph,to_add_skip_model,#Graph#Any#Any#,377

Before Change


        skip_output_id = conv_block_input_id
        for index, layer_id in enumerate(layer_list):
            layer = self.layer_list[layer_id]
            new_node_id = self._add_new_node()
            self._add_edge(deepcopy(layer), skip_output_id, new_node_id)
            skip_output_id = new_node_id

        // Add the conv layer
        layer2 = StubConv(self.layer_list[start_id].filters, self.layer_list[end_id].filters, 1)
        new_node_id = self._add_new_node()
        self._add_edge(layer2, skip_output_id, new_node_id)
        skip_output_id = new_node_id

        // Set weights to the additional conv layer.

After Change


        
        return self._block_end_node(layer_id, Constant.CONV_BLOCK_DISTANCE)

    def to_add_skip_model(self, start_id, end_id):
        Add a weighted add skip connection from after start node to end node.

        Args:
            start_id: The convolutional layer ID, after which to start the skip-connection.
            end_id: The convolutional layer ID, after which to end the skip-connection.
        
        self.operation_history.append(("to_add_skip_model", start_id, end_id))
        conv_block_input_id = self._conv_block_end_node(start_id)
        conv_block_input_id = self.adj_list[conv_block_input_id][0][0]

        dropout_input_id = self._conv_block_end_node(end_id)

        // Add the pooling layer chain.
        layer_list = self._get_pooling_layers(conv_block_input_id, dropout_input_id)
        skip_output_id = conv_block_input_id
        for index, layer_id in enumerate(layer_list):
            skip_output_id = self.add_layer(deepcopy(self.layer_list[layer_id]), skip_output_id)

        // Add the conv layer
        new_conv_layer = StubConv(self.layer_list[start_id].filters, self.layer_list[end_id].filters, 1)
        skip_output_id = self.add_layer(new_conv_layer, skip_output_id)

        // Add the add layer.
        dropout_output_id = self.adj_list[dropout_input_id][0][0]
        add_input_node_id = self._add_node(deepcopy(self.node_list[dropout_output_id]))
        add_layer = StubAdd()

        self._redirect_edge(dropout_input_id, dropout_output_id, add_input_node_id)
        self._add_edge(add_layer, add_input_node_id, dropout_output_id)
        self._add_edge(add_layer, skip_output_id, dropout_output_id)
        add_layer.input = [self.node_list[add_input_node_id], self.node_list[skip_output_id]]
        add_layer.output = self.node_list[dropout_output_id]
        self.node_list[dropout_output_id].shape = add_layer.output_shape

        // Set weights to the additional conv layer.
        if self.weighted:
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 11

Instances


Project Name: keras-team/autokeras
Commit Name: 5b3af9ff43bc61f8034f1202a2b57f21c8ee3771
Time: 2018-08-01
Author: jin@tamu.edu
File Name: autokeras/graph.py
Class Name: Graph
Method Name: to_add_skip_model


Project Name: keras-team/autokeras
Commit Name: 5b3af9ff43bc61f8034f1202a2b57f21c8ee3771
Time: 2018-08-01
Author: jin@tamu.edu
File Name: autokeras/graph.py
Class Name: Graph
Method Name: to_concat_skip_model


Project Name: keras-team/autokeras
Commit Name: 5b3af9ff43bc61f8034f1202a2b57f21c8ee3771
Time: 2018-08-01
Author: jin@tamu.edu
File Name: autokeras/graph.py
Class Name: Graph
Method Name: _insert_new_layers


Project Name: keras-team/autokeras
Commit Name: 5b3af9ff43bc61f8034f1202a2b57f21c8ee3771
Time: 2018-08-01
Author: jin@tamu.edu
File Name: autokeras/graph.py
Class Name: Graph
Method Name: to_add_skip_model