377989c11903f69f042fee717ce6be66bd6eb43a,niftynet/layer/loss_segmentation.py,,generalised_dice_loss,#Any#Any#Any#Any#,120
Before Change
Simple (inverse of volume) and Uniform (no weighting))
:return: the loss
ground_truth = tf.to_int64(ground_truth)
n_voxels = ground_truth.shape[0].value
n_classes = prediction.shape[1].value
ids = tf.constant(np.arange(n_voxels), dtype=tf.int64)
ids = tf.stack([ids, ground_truth], axis=1)
one_hot = tf.SparseTensor(indices=ids,
values=tf.ones([n_voxels], dtype=tf.float32),
dense_shape=[n_voxels, n_classes])
if weight_map is not None:
weight_map_nclasses = tf.reshape(
tf.tile(weight_map, [n_classes]), prediction.get_shape())
After Change
Simple (inverse of volume) and Uniform (no weighting))
:return: the loss
prediction = tf.cast(prediction, tf.float32)
one_hot = labels_to_one_hot(ground_truth, tf.shape(prediction))
n_classes = prediction.shape[1].value
if weight_map is not None:
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 20
Instances
Project Name: NifTK/NiftyNet
Commit Name: 377989c11903f69f042fee717ce6be66bd6eb43a
Time: 2018-04-05
Author: z.eaton-rosen@ucl.ac.uk
File Name: niftynet/layer/loss_segmentation.py
Class Name:
Method Name: generalised_dice_loss
Project Name: NifTK/NiftyNet
Commit Name: 377989c11903f69f042fee717ce6be66bd6eb43a
Time: 2018-04-05
Author: z.eaton-rosen@ucl.ac.uk
File Name: niftynet/layer/loss_segmentation.py
Class Name:
Method Name: sensitivity_specificity_loss
Project Name: NifTK/NiftyNet
Commit Name: 377989c11903f69f042fee717ce6be66bd6eb43a
Time: 2018-04-05
Author: z.eaton-rosen@ucl.ac.uk
File Name: niftynet/layer/loss_segmentation.py
Class Name:
Method Name: generalised_dice_loss
Project Name: NifTK/NiftyNet
Commit Name: 377989c11903f69f042fee717ce6be66bd6eb43a
Time: 2018-04-05
Author: z.eaton-rosen@ucl.ac.uk
File Name: niftynet/layer/loss_segmentation.py
Class Name:
Method Name: dice_nosquare