b9d42d6154f5f98696a67097cc93dac027398d76,GPflow/sgpr.py,SGPR,build_likelihood,#SGPR#,39
Before Change
L = tf.cholesky(Kuu)
// Compute intermediate matrices
A = tf.matrix_triangular_solve(L, Kuf, lower=True)*tf.sqrt(1./self.likelihood.variance)
AAT = tf.matmul(A, tf.transpose(A))
B = AAT + eye(num_inducing)
LB = tf.cholesky(B)
c = tf.matrix_triangular_solve(LB, tf.matmul(A, err), lower=True) * tf.sqrt(1./self.likelihood.variance)
//compute log marginal bound
bound = -0.5*tf.cast(num_data*output_dim, tf.float64)*np.log(2*np.pi)
bound += -tf.cast(output_dim, tf.float64)*tf.reduce_sum(tf.log(tf.user_ops.get_diag(LB)))
After Change
Kuf = self.kern.K(self.Z, self.X)
Kuu = self.kern.K(self.Z) + eye(num_inducing) * 1e-6
L = tf.cholesky(Kuu)
sigma = tf.sqrt(self.likelihood.variance)
// Compute intermediate matrices
A = tf.matrix_triangular_solve(L, Kuf, lower=True) / sigma
AAT = tf.matmul(A, tf.transpose(A))
B = AAT + eye(num_inducing)
LB = tf.cholesky(B)
Aerr = tf.matmul(A, err)
c = tf.matrix_triangular_solve(LB, Aerr, lower=True) / sigma
// compute log marginal bound
bound = -0.5*tf.cast(num_data*output_dim, tf.float64)*np.log(2*np.pi)
bound += -output_dim * tf.reduce_sum(tf.log(tf.user_ops.get_diag(LB)))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 20
Instances
Project Name: GPflow/GPflow
Commit Name: b9d42d6154f5f98696a67097cc93dac027398d76
Time: 2016-04-13
Author: james.hensman@gmail.com
File Name: GPflow/sgpr.py
Class Name: SGPR
Method Name: build_likelihood
Project Name: GPflow/GPflow
Commit Name: b9d42d6154f5f98696a67097cc93dac027398d76
Time: 2016-04-13
Author: james.hensman@gmail.com
File Name: GPflow/sgpr.py
Class Name: SGPR
Method Name: build_likelihood
Project Name: GPflow/GPflow
Commit Name: 6b8a9a5f0e738d98904ff7c46c79a44bfdd56686
Time: 2016-05-31
Author: alexggmatthews@googlemail.com
File Name: GPflow/sgpr.py
Class Name: SGPR
Method Name: build_predict
Project Name: GPflow/GPflow
Commit Name: b9d42d6154f5f98696a67097cc93dac027398d76
Time: 2016-04-13
Author: james.hensman@gmail.com
File Name: GPflow/sgpr.py
Class Name: SGPR
Method Name: build_predict