484ffb3eae65a09c717a6c823dcc888d5750df6c,sonnet/src/momentum.py,Momentum,apply,#Momentum#Any#Any#,67
Before Change
self._initialize(parameters)
for update, parameter, momentum in zip(updates, parameters,
self.accumulated_momentum):
if update is not None:
optimizer_utils.check_same_dtype(update, parameter)
lr = tf.cast(self.learning_rate, update.dtype)
mu = tf.cast(self.momentum, update.dtype)
if isinstance(update, tf.IndexedSlices):
update, indices = optimizer_utils.deduplicate_indexed_slices(
update.values, update.indices)
sparse_momentum_update = (mu * momentum.sparse_read(indices)) + update
momentum.scatter_update(
tf.IndexedSlices(sparse_momentum_update, indices))
if self.use_nesterov:
parameter.scatter_sub(
tf.IndexedSlices(
(lr * update) + (lr * mu * sparse_momentum_update),
indices))
else:
parameter.scatter_sub(
tf.IndexedSlices(lr * sparse_momentum_update, indices))
else:
momentum.assign((mu * momentum) + update)
if self.use_nesterov:
parameter.assign_sub((lr * update) + (lr * mu * momentum))
else:
parameter.assign_sub(lr * momentum)
class FastMomentum(base.Optimizer):
SGD with Momentum module.
def __init__(self,
After Change
else:
// Compute and apply a dense update.
update, momentum = momentum_update(update, learning_rate, mu,
momentum_var, self.use_nesterov)
momentum_var.assign(momentum)
param.assign_sub(update)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: deepmind/sonnet
Commit Name: 484ffb3eae65a09c717a6c823dcc888d5750df6c
Time: 2019-10-16
Author: tomhennigan@google.com
File Name: sonnet/src/momentum.py
Class Name: Momentum
Method Name: apply
Project Name: NVIDIA/OpenSeq2Seq
Commit Name: 361d87cc6d4fe86c82204becce00f4d595e1c459
Time: 2019-01-09
Author: jasoli@nvidia.com
File Name: open_seq2seq/utils/helpers.py
Class Name:
Method Name: _restore_embed
Project Name: ray-project/ray
Commit Name: 83e06cd30a45245c2cb0e9f4bd924224b1581554
Time: 2020-03-01
Author: sven@anyscale.io
File Name: rllib/agents/ddpg/ddpg_policy.py
Class Name: DDPGTFPolicy
Method Name: __init__