pass
// split out out output column so we have a proper X, y dataset
X, y = utils.split_output_dataframe(raw_training_data, self.output_column)
// TODO: modularize into clean_y_vals function
if self.type_of_estimator == "classifier":
After Change
// Remove the output column from the dataset, and store it into the y varaible
y = list(X_df.pop(self.output_column))
print("removed the output column")