e6bc2e29b7825e15f4e0e95d74e43910d69875cc,auto_ml/predictor.py,Predictor,_get_xgb_feat_importances,#Predictor#Any#,985
Before Change
print("Here are the feature_importances from the tree-based model:")
print("The printed list will only contain at most the top 50 features.")
for feature in sorted_feature_infos[-50:]:
print(str(feature[0]) + ": " + str(round(feature[1] / sum_of_all_feature_importances, 4)))
def _print_ml_analytics_results_random_forest(self, feature_responses):
try:
final_model_obj = self.trained_final_model.named_steps["final_model"]
except:
After Change
feature_infos.append([feature_name, feat_importance])
sorted_feature_infos = sorted(feature_infos, key=lambda x: x[1])
df = pd.DataFrame(sorted_feature_infos)
return df
// print("Here are the feature_importances from the tree-based model:")
// print("The printed list will only contain at most the top 50 features.")
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 3
Instances Project Name: ClimbsRocks/auto_ml
Commit Name: e6bc2e29b7825e15f4e0e95d74e43910d69875cc
Time: 2017-05-20
Author: climbsbytes@gmail.com
File Name: auto_ml/predictor.py
Class Name: Predictor
Method Name: _get_xgb_feat_importances
Project Name: streamlit/streamlit
Commit Name: 1a6e9154d9a34b957bbea7ce48a6c95c6238b23c
Time: 2018-03-18
Author: adrien.g.treuille@gmail.com
File Name: examples/new.py
Class Name:
Method Name:
Project Name: ClimbsRocks/auto_ml
Commit Name: e36759520ea3342600180aa2818b4b9b8be9de00
Time: 2017-05-21
Author: climbsbytes@gmail.com
File Name: auto_ml/predictor.py
Class Name: Predictor
Method Name: _print_ml_analytics_results_linear_model
Project Name: streamlit/streamlit
Commit Name: 2d609c9ef7b41a70cc136ef4b6a7c42800799198
Time: 2018-02-13
Author: adrien.g.treuille@gmail.com
File Name: examples/new.py
Class Name:
Method Name: