o = args[0]
for i in range(1, self.depth+1):
o += self.inner_activation(T.dot(args[i], args[i+self.depth]))
return o
def output(self, train):
X = self.get_input(train)
After Change
o = args[0]
for i in range(1, self.depth+1):
o += self.inner_activation(T.dot(args[i], args[i+self.depth]))
return self.activation(o)
def output(self, train):
X = self.get_input(train)
X = X.dimshuffle((1,0,2))