mean_function=mean_function,
**kwargs)
del self.X // in GPLVM this is a Param
self.X = Parameter(X_mean)
class BayesianGPLVM(GPModel):
def __init__(self,
After Change
data = (x_data_mean, data)
super().__init__(self, data, kernel, mean_function=mean_function, **kwargs)
x_parameter = Parameter(x_data_mean)self.data = (x_parameter, data)
class BayesianGPLVM(GPModel):
def __init__(self, data, x_data_mean, x_data_var, kernel, M, Z=None, X_prior_mean=None, X_prior_var=None):