_ = sess.run(probs, feed_dict={x: [img1]})[0] // 1st time takes time to compile
start_time = time.time()
prob = sess.run(probs, feed_dict={x: [img1]})[0]
print(" End time : %.5ss" % (time.time() - start_time))
preds = (np.argsort(prob)[::-1])[0:5]
for p in preds:
After Change
img1 = img1.astype(np.float32)[np.newaxis, ...]
start_time = time.time()
output = squeezenet(img1, is_train=False)
prob = tf.nn.softmax(output)[0].numpy()
print(" End time : %.5ss" % (time.time() - start_time))
preds = (np.argsort(prob)[::-1])[0:5]
for p in preds:
print(class_names[p], prob[p])