Class probability estimates.
"""
kwargs = self.filter_sk_params(Sequential.predict_proba, kwargs)
return self.model.predict_proba(X, **kwargs)
def score(self, X, y, **kwargs):
"""Returns the mean accuracy on the given test data and labels.
After Change
will return "(n_samples, 2)"
"""
kwargs = self.filter_sk_params(Sequential.predict_proba, kwargs)
probs = self.model.predict_proba(X, **kwargs)
// check if binary classification
if probs.shape[1] == 1:
// first column is probability of class 0 and second is of class 1