b5a02391e003c33c8f8258a7e3d0736503c3c048,examples/babi_memnn.py,,,#,97

Before Change


// we choose to use a RNN instead.
answer.add(LSTM(32))
// one regularization layer -- more would probably be needed.
answer.add(Dropout(0.3))
answer.add(Dense(vocab_size))
// we output a probability distribution over the vocabulary
answer.add(Activation("softmax"))

After Change



// placeholders
input_sequence = Input((story_maxlen,))
question = Input((query_maxlen,))

// encoders
// embed the input sequence into a sequence of vectors
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: keras-team/keras
Commit Name: b5a02391e003c33c8f8258a7e3d0736503c3c048
Time: 2017-03-15
Author: farizrahman4u@gmail.com
File Name: examples/babi_memnn.py
Class Name:
Method Name:


Project Name: keras-team/keras
Commit Name: e9aa6a5ebe3468f6413ef15ddde128725139abe9
Time: 2017-07-18
Author: gokcen.eraslan@gmail.com
File Name: tests/keras/test_callbacks.py
Class Name:
Method Name: test_TensorBoard


Project Name: asyml/texar
Commit Name: 791e7325a985bc8dd1a213c7cd1b1e888f934074
Time: 2018-05-27
Author: zhitinghu@gmail.com
File Name: texar/modules/embedders/embedders.py
Class Name: WordEmbedder
Method Name: __init__