// print("Cycles: {}".format(cycles))
// number of candidates to be the best new graph
cycles_len = np.array([len(cycle) for cycle in cycles])
n_candidates = np.prod(cycles_len)
for i in range(n_candidates):
new_directed_graph = copy.deepcopy(directed_graph)
for j in range(n_cycles):
After Change
// print("Cycles: {}".format(cycles))
// number of candidates to be the best new graph
cycles_len = np.array([len(cycle) for cycle in cycles])
n_candidates = int(np.prod(cycles_len))
for i in range(n_candidates):
new_directed_graph = deepcopy(directed_graph)
for j in range(n_cycles):