0ba6d95e768eb7a0d74a6fda3ea893e7fb2d7a67,examples/variational_autoencoder.py,,sampling,#Any#,34
Before Change
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0.,
stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
After Change
dim = K.int_shape(z_mean)[1]
// by default, random_normal has mean=0 and std=1.0
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
def plot_results(models,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: keras-team/keras
Commit Name: 0ba6d95e768eb7a0d74a6fda3ea893e7fb2d7a67
Time: 2018-05-10
Author: rowel.atienza@gmail.com
File Name: examples/variational_autoencoder.py
Class Name:
Method Name: sampling
Project Name: maciejkula/spotlight
Commit Name: fde2f66676f960782c993f7148927c4a4197ab10
Time: 2017-06-27
Author: maciej.kula@gmail.com
File Name: spotlight/factorization/explicit.py
Class Name: ExplicitFactorizationModel
Method Name: fit
Project Name: keras-team/keras
Commit Name: 0ba6d95e768eb7a0d74a6fda3ea893e7fb2d7a67
Time: 2018-05-10
Author: rowel.atienza@gmail.com
File Name: examples/variational_autoencoder_deconv.py
Class Name:
Method Name: sampling