f3f9e020119736920b5bf3adc91fd658e1910775,examples/mnist_denoising_autoencoder.py,,,#,33
Before Change
x_decoded = autoencoder.predict(x_test_noisy)
// Display the 1st 8 corrupted and denoised images
imgs = np.concatenate([x_test_noisy[:8], x_decoded[:8]])
imgs = imgs.reshape((4, 4, image_size, image_size))
imgs = np.vstack([np.hstack(i) for i in imgs])
plt.figure()
After Change
"Corrupted Input: middle rows, "
"Denoised Input: third rows")
plt.imshow(imgs, interpolation="none", cmap="gray")
Image.fromarray(imgs).save("corrupted_and_denoised.png")
plt.show()
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 2
Instances
Project Name: keras-team/keras
Commit Name: f3f9e020119736920b5bf3adc91fd658e1910775
Time: 2018-01-12
Author: ozabluda@gmail.com
File Name: examples/mnist_denoising_autoencoder.py
Class Name:
Method Name:
Project Name: hanxiao/bert-as-service
Commit Name: 2bfe5bfcec7759ae022b1a479411aa7d1b8401f1
Time: 2019-05-06
Author: zyn2122@gmail.com
File Name: example/example7.py
Class Name:
Method Name:
Project Name: AKSHAYUBHAT/DeepVideoAnalytics
Commit Name: ae754071b2a696949a31b1003150409bce388990
Time: 2017-03-06
Author: akshayubhat@gmail.com
File Name: dvalib/indexer.py
Class Name: FacenetIndexer
Method Name: apply