logger.info("Prediction done. Trial job id = %s. Predict value = %s", trial_job_id, predict_y)
if predict_y is None:
logger.info("wait for more information to predict precisely")
return AssessResult.Good
standard_performance = self.completed_best_performance * self.threshold
end_time = datetime.datetime.now()
if (end_time - start_time).seconds > 60:
After Change
predict_y = curvemodel.predict(scalar_trial_history)
log_message = "Prediction done. Trial job id = {}, Predict value = {}".format(trial_job_id, predict_y)
if predict_y is None:
logger.info("%s, wait for more information to predict precisely", log_message)
return AssessResult.Good
else:
logger.info(log_message)
standard_performance = self.completed_best_performance * self.threshold