2318052dc79966bf36675606b7d992a347418292,gluoncv/model_zoo/resnet.py,BottleneckV1,__init__,#BottleneckV1#Any#Any#Any#Any#Any#Any#,133

Before Change


        super(BottleneckV1, self).__init__(**kwargs)
        self.body = nn.HybridSequential(prefix="")
        self.body.add(nn.Conv2D(channels//4, kernel_size=1, strides=stride))
        self.body.add(nn.BatchNorm())
        self.body.add(nn.Activation("relu"))
        self.body.add(_conv3x3(channels//4, 1, channels//4))
        self.body.add(nn.BatchNorm())
        self.body.add(nn.Activation("relu"))
        self.body.add(nn.Conv2D(channels, kernel_size=1, strides=1))

        if use_se:
            self.se = nn.HybridSequential(prefix="")
            self.se.add(nn.Dense(channels // 4, use_bias=False))
            self.se.add(nn.Activation("relu"))
            self.se.add(nn.Dense(channels * 4, use_bias=False))
            self.se.add(nn.Activation("sigmoid"))
        else:
            self.se = None

        if not last_gamma:
            self.body.add(nn.BatchNorm())
        else:
            self.body.add(nn.BatchNorm(gamma_initializer="zeros"))

        if downsample:
            self.downsample = nn.HybridSequential(prefix="")
            self.downsample.add(nn.Conv2D(channels, kernel_size=1, strides=stride,
                                          use_bias=False, in_channels=in_channels))
            self.downsample.add(nn.BatchNorm())
        else:
            self.downsample = None

After Change


    downsample : bool, default False
        Whether to downsample the input.
    in_channels : int, default 0
        Number of input channels. Default is 0, to infer from the graph.
    last_gamma : bool, default False
        Whether to initialize the gamma of the last BatchNorm layer in each bottleneck to zero.
    use_se : bool, default False
        Whether to use Squeeze-and-Excitation module
    norm_layer : object
        Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
        Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    norm_kwargs : dict
        Additional `norm_layer` arguments, for example `num_devices=4`
        for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 24

Instances


Project Name: dmlc/gluon-cv
Commit Name: 2318052dc79966bf36675606b7d992a347418292
Time: 2019-01-07
Author: cheungchih@gmail.com
File Name: gluoncv/model_zoo/resnet.py
Class Name: BottleneckV1
Method Name: __init__


Project Name: dmlc/gluon-cv
Commit Name: 2318052dc79966bf36675606b7d992a347418292
Time: 2019-01-07
Author: cheungchih@gmail.com
File Name: gluoncv/model_zoo/resnet.py
Class Name: BottleneckV1
Method Name: __init__


Project Name: dmlc/gluon-cv
Commit Name: 2318052dc79966bf36675606b7d992a347418292
Time: 2019-01-07
Author: cheungchih@gmail.com
File Name: gluoncv/model_zoo/resnext.py
Class Name: Block
Method Name: __init__


Project Name: dmlc/gluon-cv
Commit Name: 2318052dc79966bf36675606b7d992a347418292
Time: 2019-01-07
Author: cheungchih@gmail.com
File Name: gluoncv/model_zoo/resnet.py
Class Name: BasicBlockV1
Method Name: __init__