feed_dict, loss_value = self.run_training_steps(data_sets, steps_between_checks, batch_size)
self.step += steps_between_checks
if run_as_check is not None:
run_as_check(feed_dict, loss_value, self.step)
def _has_reached_precision(self, data_sets, precision, batch_size):
if precision is not None and self.step > 0:
self.do_eval(data_sets.test, batch_size)
if self.precision > precision: