b5a02391e003c33c8f8258a7e3d0736503c3c048,examples/babi_memnn.py,,,#,97

Before Change


// compute a "match" between input sequence elements (which are vectors)
// and the question vector sequence
match = Sequential()
match.add(Merge([input_encoder_m, question_encoder],
                mode="dot",
                dot_axes=[2, 2]))
match.add(Activation("softmax"))

After Change


print("Compiling...")

// placeholders
input_sequence = Input((story_maxlen,))
question = Input((query_maxlen,))

// encoders
// embed the input sequence into a sequence of vectors
input_encoder_m = Sequential()
input_encoder_m.add(Embedding(input_dim=vocab_size,
                              output_dim=64))
input_encoder_m.add(Dropout(0.3))
// output: (samples, story_maxlen, embedding_dim)

// embed the input into a sequence of vectors of size query_maxlen
input_encoder_c = Sequential()
input_encoder_c.add(Embedding(input_dim=vocab_size,
                              output_dim=query_maxlen))
input_encoder_c.add(Dropout(0.3))
// output: (samples, story_maxlen, query_maxlen)

// embed the question into a sequence of vectors
question_encoder = Sequential()
question_encoder.add(Embedding(input_dim=vocab_size,
                               output_dim=64,
                               input_length=query_maxlen))
question_encoder.add(Dropout(0.3))
// output: (samples, query_maxlen, embedding_dim)

// encode input sequence and questions (which are indices) to sequences of dense vectors
input_encoded_m = input_encoder_m(input_sequence)
input_encoded_c = input_encoder_c(input_sequence)
question_encoded = question_encoder(question)

// compute a "match" between the first input vector sequence
// and the question vector sequence
match = dot([input_encoded_m, question_encoded], axes=(2, 2))  // (samples, story_maxlen, query_maxlen)
match = Activation("softmax")(match)

// add the match matrix with the second input vector sequence
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: keras-team/keras
Commit Name: b5a02391e003c33c8f8258a7e3d0736503c3c048
Time: 2017-03-15
Author: farizrahman4u@gmail.com
File Name: examples/babi_memnn.py
Class Name:
Method Name:


Project Name: keras-team/keras
Commit Name: 9efe17aeeafc6d8c1406a48f82fc63731d4b2b6c
Time: 2016-02-29
Author: francois.chollet@gmail.com
File Name: keras/layers/recurrent.py
Class Name: Recurrent
Method Name: get_initial_states


Project Name: keras-team/keras
Commit Name: c2244d2a4cb5f86968fb117f75469283a19b8a24
Time: 2018-10-21
Author: gabrieldemarmiesse@gmail.com
File Name: tests/keras/backend/backend_test.py
Class Name: TestBackend
Method Name: test_sparse_dot