fcf346e85356a73472a10c564a0a40011139f6be,spotlight/sequence/representations.py,CNNNet,user_representation,#CNNNet#Any#,114

Before Change


                                                        1,
                                                        seq_len,
                                                        dim))
        x = self.cnn_layers[0](sequence_embeddings)

        user_representations = x.view(batch_size, dim, -1)
        pooled_representations = (user_representations

After Change


        (batch_size, seq_len, dim) = sequence_embeddings.size()

        // Move embedding dimensions to channels and add a fourth dim.
        sequence_embeddings = (sequence_embeddings
                               .permute(0, 2, 1)
                               .contiguous()
                               .view(batch_size, dim, seq_len, 1))

        x = sequence_embeddings
        for cnn_layer in self.cnn_layers:
            x = cnn_layer(x)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 2

Instances


Project Name: maciejkula/spotlight
Commit Name: fcf346e85356a73472a10c564a0a40011139f6be
Time: 2017-07-02
Author: maciej.kula@gmail.com
File Name: spotlight/sequence/representations.py
Class Name: CNNNet
Method Name: user_representation


Project Name: catalyst-team/catalyst
Commit Name: 447444fd06594e531ae1141afac78051481e4468
Time: 2019-10-31
Author: scitator@gmail.com
File Name: catalyst/rl/offpolicy/algorithms/sac.py
Class Name: SAC
Method Name: _base_loss


Project Name: catalyst-team/catalyst
Commit Name: 447444fd06594e531ae1141afac78051481e4468
Time: 2019-10-31
Author: scitator@gmail.com
File Name: catalyst/rl/offpolicy/algorithms/td3.py
Class Name: TD3
Method Name: _base_loss