fcf346e85356a73472a10c564a0a40011139f6be,spotlight/sequence/representations.py,CNNNet,user_representation,#CNNNet#Any#,114
Before Change
1,
seq_len,
dim))
x = self.cnn_layers[0](sequence_embeddings)
user_representations = x.view(batch_size, dim, -1)
pooled_representations = (user_representations
After Change
(batch_size, seq_len, dim) = sequence_embeddings.size()
// Move embedding dimensions to channels and add a fourth dim.
sequence_embeddings = (sequence_embeddings
.permute(0, 2, 1)
.contiguous()
.view(batch_size, dim, seq_len, 1))
x = sequence_embeddings
for cnn_layer in self.cnn_layers:
x = cnn_layer(x)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 2
Instances
Project Name: maciejkula/spotlight
Commit Name: fcf346e85356a73472a10c564a0a40011139f6be
Time: 2017-07-02
Author: maciej.kula@gmail.com
File Name: spotlight/sequence/representations.py
Class Name: CNNNet
Method Name: user_representation
Project Name: catalyst-team/catalyst
Commit Name: 447444fd06594e531ae1141afac78051481e4468
Time: 2019-10-31
Author: scitator@gmail.com
File Name: catalyst/rl/offpolicy/algorithms/sac.py
Class Name: SAC
Method Name: _base_loss
Project Name: catalyst-team/catalyst
Commit Name: 447444fd06594e531ae1141afac78051481e4468
Time: 2019-10-31
Author: scitator@gmail.com
File Name: catalyst/rl/offpolicy/algorithms/td3.py
Class Name: TD3
Method Name: _base_loss