print(">>>>>>batch_size", batch_size)
// if encode end state exists use it, otherwise set up zero end state
if "encoder_end_state" in encoder_outputs:
encoder_end_state = encoder_outputs["encoder_end_state"]
else:
encoder_end_state = [
After Change
tf.zeros([batch_size, self.rnn_units], tf.float32),
tf.zeros([batch_size, self.rnn_units], tf.float32)
]
elif self.cell_type in {"rnn", "gru"} and encoder_end_state is None:
encoder_end_state = tf.zeros([batch_size, self.rnn_units], tf.float32)
if training: