4aa41625bf0e32eecf96b825db2d8f273fa40183,examples/variational_autoencoder_deconv.py,CustomVariationalLayer,call,#CustomVariationalLayer#Any#,127

Before Change


        loss = self.vae_loss(x, x_decoded_mean_squash)
        self.add_loss(loss, inputs=inputs)
        // we don"t use this output, but it has to have the correct shape:
        return K.ones_like(x)


loss_layer = CustomVariationalLayer()([x, x_decoded_mean_squash])

After Change


        loss = self.vae_loss(x, x_decoded_mean_squash)
        self.add_loss(loss, inputs=inputs)
        // We don"t use this output.
        return x


y = CustomVariationalLayer()([x, x_decoded_mean_squash])
vae = Model(x, y)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: keras-team/keras
Commit Name: 4aa41625bf0e32eecf96b825db2d8f273fa40183
Time: 2017-04-11
Author: francois.chollet@gmail.com
File Name: examples/variational_autoencoder_deconv.py
Class Name: CustomVariationalLayer
Method Name: call


Project Name: keras-team/keras
Commit Name: 4aa41625bf0e32eecf96b825db2d8f273fa40183
Time: 2017-04-11
Author: francois.chollet@gmail.com
File Name: examples/variational_autoencoder.py
Class Name: CustomVariationalLayer
Method Name: call


Project Name: keras-team/keras
Commit Name: 42497d9fda537b5abc70088bfd3656fc92b5c9ab
Time: 2015-07-02
Author: xavier@whirlscape.com
File Name: keras/layers/embeddings.py
Class Name: Embedding
Method Name: get_output_mask