loss = self.vae_loss(x, x_decoded_mean_squash)
self.add_loss(loss, inputs=inputs)
// we don"t use this output, but it has to have the correct shape:
return K.ones_like(x)
loss_layer = CustomVariationalLayer()([x, x_decoded_mean_squash])
After Change
loss = self.vae_loss(x, x_decoded_mean_squash)
self.add_loss(loss, inputs=inputs)
// We don"t use this output.
return x
y = CustomVariationalLayer()([x, x_decoded_mean_squash])
vae = Model(x, y)