5e599fb01df65d156a40f7a138ab6627a06a50db,gpflow/optimizers/natgrad.py,NaturalGradient,_natgrad_steps,#NaturalGradient#Any#Any#,113
Before Change
self._natgrad_step(loss_fn, q_mu, q_sqrt, xi_transform)
with tf.name_scope(f"{self._name}/natural_gradient_steps"):
list(map(natural_gradient_step, *zip(*parameters)))
def _natgrad_step(
self, loss_fn: Callable, q_mu: Parameter, q_sqrt: Parameter, xi_transform: XiTransform
):
After Change
tape.watch(unconstrained_variables)
loss = loss_fn()
q_mu_grads , q_sqrt_grads = tape.gradient(loss, [q_mus, q_sqrts])
// NOTE that these are the gradients in *unconstrained* space
with tf.name_scope(f"{self._name}/natural_gradient_steps"):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: GPflow/GPflow
Commit Name: 5e599fb01df65d156a40f7a138ab6627a06a50db
Time: 2020-05-07
Author: 6815729+condnsdmatters@users.noreply.github.com
File Name: gpflow/optimizers/natgrad.py
Class Name: NaturalGradient
Method Name: _natgrad_steps
Project Name: streamlit/streamlit
Commit Name: a410b46917e3c34e74f67e6262cfa42e8fc7849c
Time: 2019-02-27
Author: tconkling@gmail.com
File Name: lib/streamlit/image_proto.py
Class Name:
Method Name: marshall_images
Project Name: GPflow/GPflow
Commit Name: b41d4f38436e4a090c940dbd3bc7e2afd39a283e
Time: 2020-04-23
Author: st--@users.noreply.github.com
File Name: gpflow/optimizers/natgrad.py
Class Name: NaturalGradient
Method Name: _natgrad_steps