faf3aa876462323f2fa721ebd633752d6489808f,sru/modules.py,SRU,forward,#SRU#Any#Any#Any#,536
Before Change
// unpack packed, if input is packed. packing and then unpacking will be slower than not
// packing at all, but makes SRU usage compatible with nn.RNN usage
orig_input = input
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
length = input.size(0)
batch_size = input.size(1)
mask_pad = torch.arange(batch_size,
device=batch_sizes.device).expand(length, batch_size)
mask_pad = (mask_pad >= batch_sizes.view(length, 1)).contiguous()
else:
length = input.size(0)
batch_size = input.size(1)
batch_sizes = None
sorted_indices = None
unsorted_indices = None
// The dimensions of `input` should be: `(sequence_length, batch_size, input_size)`.
if input.dim() != 3:
raise ValueError("There must be 3 dimensions for (length, batch_size, input_size)")
if c0 is None:
After Change
if isinstance(orig_input, PackedSequence):
input, lengths = nn.utils.rnn.pad_packed_sequence(input)
max_length = lengths.max().item()
mask_pad = torch.ByteTensor([[0] * l + [1] * (max_length - l) for l in lengths.tolist() ])
mask_pad = mask_pad.to(input.device).transpose(0, 1).contiguous()
// The dimensions of `input` should be: `(sequence_length, batch_size, input_size)`.
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: asappresearch/sru
Commit Name: faf3aa876462323f2fa721ebd633752d6489808f
Time: 2020-09-18
Author: taolei@csail.mit.edu
File Name: sru/modules.py
Class Name: SRU
Method Name: forward
Project Name: streamlit/streamlit
Commit Name: 87f77f89f44f4efcedcdd1495458907726eab490
Time: 2019-05-29
Author: 44782696+aaj-st@users.noreply.github.com
File Name: lib/streamlit/elements/image_proto.py
Class Name:
Method Name: marshall_images
Project Name: tensorlayer/tensorlayer
Commit Name: d3bdc5449964423387861c78edd9d890a81a5466
Time: 2019-03-31
Author: jingqing.zhang15@imperial.ac.uk
File Name: tensorlayer/layers/core.py
Class Name:
Method Name: tolist